收稿日期: 2016-05-09
修回日期: 2017-07-08
网络出版日期: 2017-09-11
基金资助
国家自然科学基金项目“复杂空区三维激光等距扫描与多站点云建模算法研究”(编号:51604301)和金属矿山安全与健康国家重点实验室开发基金项目“深井复杂空区三维激光等距扫描与建模算法研究”(编号:2015-JSKSSYS-01)联合资助.
Research on Automatic Recognizing of the Effective Microseismic Signals
Received date: 2016-05-09
Revised date: 2017-07-08
Online published: 2017-09-11
拾取微地震信号到时对事件定位研究至关重要,传统方法直接拾取所有采集信号到时后,再通过人工手动判别出微地震事件,工作量大且效率低。针对这一问题,提出了一种自动识别有效微震信号方法——能量极值法(Energy Extreme Value,EEV)。通过移动时窗计算信号能量比Ratio变化曲线,分析不同信号的区别,提出在Ratio变化曲线上寻找与右侧点之间的偏差大于临界值Diff的特征极值点作为判别条件,研究分析了该方法的主要影响因素为移动时窗长度M和临界值Diff,并优化确定了最佳参数。采用MATLAB对冬瓜山铜矿采集的实际信号数据进行分析处理,结果表明:该算法能够精确识别噪声和微地震信号,与人工手动判别结果对比,准确率达96%以上,极大地缩短了数据处理时间,提高了工作效率,对微震信号处理具有重要的指导意义。
刘晓明 , 赵君杰 , 彭平安 , 毕林 , 代碧波 . 有效微震信号自动识别技术研究[J]. 黄金科学技术, 2017 , 25(3) : 84 -91 . DOI: 10.11872/j.issn.1005-2518.2017.03.084
Microseismic events arrival-pick is important for events location and other research analysis.Traditional method picked all collected signals and recognized the microseismic events manually,was not only heavy workload,but also low efficiency.This paper proposed an automatic method of recognizing the efficient microseismic signals,EEV(Energy Extreme Value).Calculated the ratio of the energy value between front and rear window through the specified moving time window,analyzed the different signals characteristics,put forward a method,through finding extreme value point,which the deviation between the right point is greater than the threshold diff,as the discrimination standard.Meanwhile,studied the main influence factors of this method, namely,the length of time window M,and the threshold diff,optimized and determined the optimal parameters. Using MATLAB Software to process the real datas of Dongguashan copper mine,the results show that the algorithm can accurately recognize nosie and seismic signal,the accuracy rate is up to 96%,compared with manual results,greatly shortens the time of data processing and improves the work efficiency,meanwhile, provide an important guidance for seismic signal process.
[1] Stevenson,P R.Microearthquakes at Flathead Lake, Montana:A study using automatic earthquake processing[J].Bulletin of the Seismological Society of America,1976,66(1):61-80.
[2] Song Weiqi,Feng Chao.Automatic identification and positioning method for microseismic effective events[J].Oil Geophysical Prospecting,2013,48(2):283-288.[宋维琪,冯超.微地震有效事件自动识别与定位方法[J].石油地球物理勘探,2013,48(2):283-288.]
[3] Gao Shufang,Li Shanyou,Wu Dongpo,et al.An automatic identification method of seismic phase based on modified STA/LTA algorithm[J].World Earthquake Engineering,2008, 24(2):37-41.[高淑芳,李山有,武东坡,等.一种改进的STA/LTA震相自动识别方法[J].世界地震工程,2008,24(2):37-41.]
[4] Andy St-Onge.Akaike information criterion applied to detec- ting first arrival times on microseismic data[C].CSPG CSEG CWLS Convention,2011.
[5] Küperkoch L,Meier T,Lee J,et al.Automated determination of phase arrival times at regional and local distances using higher order statistics[J].Geophysical Journal International, 2010,181:1159-1170.
[6] Zhao Dapeng,Liu Xiqiang,Li Hong,et al.Detection of regional seismic events by kurtosis method and automatic
identification of direct P-wave first motion by kurtosis-AIC method[J].Journal of Seismological Research,2012,35(2):220-225.[赵大鹏,刘希强,李红,等.峰度和AIC方法在区域地震事件和直达P波初动自动识别方面的应用[J].地震研究,2012,35(2):220-225.]
[7] Zhao Dapeng,Liu Xiqiang,Liu Raoxing,et al.Detection of regional seismic events by high order statistics method and automatic identification of direct P-wave first motion by AIC method [J].Seismological and Geomagnetic Observation and Research,2013,34(增3):61-69.[赵大鹏,刘希强,刘尧兴,等.高阶统计量及AIC方法在区域地震事件和直达P波初动识别中的应用[J].地震地磁观测与研究, 2013,34(S3):61-69.]
[8] Tian Youping,Zhao Aihua.Automatic identification of P-wave based on wavelet packet and kurtosis-AIC method [J].ActaSeismologica Sinica,2016,38(1):71-85.[田优平,赵爱华.基于小波包和峰度赤池信息量准则的P波震相自动识别方法[J].地震学报,2016,38(1):71-85.]
[9] Liu Xiqiang,Zhou Huilan,Shen Ping,et al.Wavelet transform method for identifying the three phase seismic phase[J].Acta Seismologica Sinica,2000,22(2):125-131.[刘希强, 周蕙兰,沈萍,等.用于三分向记录震相识别的小波变换方法[J].地震学报,2000,22(2):125-131.]
[10] Feng Hongwu.Research on Phase Automatic Identification of Earthquake Early Warning [D].Lanzhou:Lanzhou Institute of Seismology,CEA,2014.[冯红武.地震预警中的震相自动识别方法和技术研究[D].兰州:中国地震局兰州地震研究所, 2014.]
[11] Qu Junhao,Liu Xiqiang,Wu Dantong,et al.Identification between near and distant earthquakes based on neutral network [J].Journal of Seismological Research,2012,35(3):360-366.[曲均浩,刘希强,吴丹彤,等.基于神经网络的近震与远震识别[J].地震研究,2012,35(3):360-366.]
[12] Wang Juan,Liu Junmin,Fan Wanchun.Application of neural network in the discrimination of seismical signal[J].Modern Electronic Technology,2004,35(8):35-37.[王娟,刘俊民,范万春.神经网络在震相识别中的应用[J]. 现代电子技术,2004,35(8):35-37.]
[13] Song Weiqi,Yu Zhichao,Yang Qinyong,et al.The high order moments of effective micro seismic events picking processing method[J].Geophysical Prospecting for Petro- leum,2013,52(4):388-393.[宋维琪,喻智超,杨勤勇,等.高阶矩有效微地震事件拾取处理方法[J].石油物探,2013,52(4):388-393.]
[14] Tan Yuyang,He Chuan,Cao Nai.Automatic microseismic event detection based on multichannel semblance coefficient[J].Geophysical Prospecting for Petroleum,2015,54(2):126-132.[谭玉阳,何川,曹耐.基于多道相似系数的微地震事件自动识别[J].石油物探,2015,54(2):126-132.]
[15] Ye Genxi,Jiang Fuxing,Yang Shuhua.Possibility of auto- matically picking first arrival of microseismic wave by energy eigenvalue method[J].Chinese Journal of Geophysics,2008,51(5):1574-1581.[叶根喜,姜福兴,杨淑华.时窗能量特征法拾取微地震波初始到时的可行性研究[J].地球物理学报,2008,51(5):1574-1581.]
[16] Zhang Junhua,Zhao Yong,Zhao Aiguo,et al.Seismic first break pickup using wavelet transform and power ratio method[J].Computing Techniques for Geophysical and Geochemical Exploration,2002,24(4):309-312.[张军华,赵勇,赵爱国,等.用小波变换与能量比方法联合拾取初至波[J].物探化探计算技术,2002,24(4):309-312.]
/
〈 | 〉 |