img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

全尾砂重力浓密导水通道分布与细观渗流规律

  • 焦华喆 ,
  • 靳翔飞 ,
  • 陈新明 ,
  • 杨亦轩 ,
  • 王金星
展开
  • 河南理工大学土木工程学院,河南 焦作 454000
焦华喆(1985-),男,河南商丘人,博士,讲师,从事金属矿充填开采、超细颗粒表面化学等方面的研究工作。Jiaohuazhe@163.com

收稿日期: 2018-10-10

  修回日期: 2019-06-09

  网络出版日期: 2019-11-07

基金资助

国家自然科学基金青年基金项目“全粒级尾砂浆的结构—流变—渗流特性及深度脱水机理”(51704094);国家自然科学基金面上项目“尾砂絮团结构剪切演化特征及对深锥浓密性能影响机制”(51574013);河南省高等学校重点科研项目“沉降压缩过程中的金属尾矿絮团自密实行为与机理”(16A440003);国家安全生产重大事故防治关键技术项目“细粒全尾砂浆深锥浓密一段浓缩制备膏体关键技术研究”(henan-0005-2016AQ);河南省矿产资源绿色高效开采与综合利用重点实验室开放基金项目“基于玄武岩纤维的大变形巷道抗裂耐拉喷射混凝土技术”(S201606)

Flow Channel Distribution and Mesoscopic Seepage Rule of Unclassified-tailings in Gravity Thickening Processing

  • Huazhe JIAO ,
  • Xiangfei JIN ,
  • Xinming CHEN ,
  • Yixuan YANG ,
  • Jinxing WANG
Expand
  • School of Civil Engineering,Henan Polytechnic University,Jiaozuo 454000,Henan,China

Received date: 2018-10-10

  Revised date: 2019-06-09

  Online published: 2019-11-07

摘要

浓密床层导水通道分布特征及通道内部的细观渗流机制是影响全尾砂重力浓密效果的关键因素。利用连续浓密试验与CT扫描技术相结合的方法研究剪切作用对床层孔隙分布特征的影响,将扫描结果导入COMSOL软件进行床层内部液体逆向渗流规律模拟,揭示剪切作用对排水过程的影响机理。结果表明:在给料浓度为10%,絮凝剂浓度为0.01%时,无/有剪切作用下连续浓密平均浓度分别为50.10%和55.82%;内部孔隙率分别为49.90%和44.18%。无/有剪切作用下导水通道数量分别为6和2,剪切作用使导水通道的数量降低了66.7%;流出通道数分别为6和1,流出通道数量降低了83.3%;通道内液体最大渗流速度分别为9.574×10-6 m/s和2.592×10-6 m/s,出口最大流速分别为5.372×10-6 m/s和1.468×10-6 m/s;孔隙表面最大压力值随着液体逆向渗流逐渐降低。剪切前导水通道呈开放连通状态,排水后孔隙体积减小,导水通道闭合,床层浓度进一步提高。导水通道数量的降低说明剪切作用实现了床层的强化排水,为膏体材料的制备奠定基础。

本文引用格式

焦华喆 , 靳翔飞 , 陈新明 , 杨亦轩 , 王金星 . 全尾砂重力浓密导水通道分布与细观渗流规律[J]. 黄金科学技术, 2019 , 27(5) : 731 -739 . DOI: 10.11872/j.issn.1005-2518.2019.05.731

Abstract

With the expanding scale of mining exploration and mining,and the increasingly serious environmental problems associated with mining,abandoned tailings and mined-out areas have become major hazards in mine safety construction.The traditional low concentration tailings surface accumulation treatment will not only cause land pollution,but also be eroded by rainwater,aggravate the cracking of tailings reservoir,and there are hidden dangers of dam break.Paste filling technology is a green tailings disposal technology,which can not only save land resources,but also protect the ecological environment by disposing of abandoned tailings.The research results show that the strength of tailings filling body is positively correlated with slurry concentration in a certain range.Therefore,by increasing the concentration of tailings filling slurry,the amount of cement can be greatly reduced,and the cost of tailings disposal can be reduced.The key links of paste filling technology of unclassified-tailings are concentrated dehydration of fine tailings and paste preparation.Distribution characteristics of diversion channel in dense bed and micro-seepage mechanism in channel are key factors affecting gravity concentration effect of unclassified-tailings.The raw material of the unclassified-tailings comes from vanadium iron ore flotation tailings.The flocculation settling and shearing experiments of the unclassified-tailings were carried out on a self-developed intelligent small continuous densification test platform.The effect of shearing on the pore distribution characteristics of the bed was studied by combining the continuous densification test with CT scanning technology.The rotation of the scraper at the bottom of the thickener breaks the static balance between particles and water,connects the pore and discharges the closed water to form a high concentration underflow. Samples were obtained by in-situ sampling-quick freezing-freeze drying process for CT scanning test.The image results obtained by CT scanning were segmented,denoised and binary processed by ImageJ image processing software.Then the results were imported into COMSOL Multiphysics software to simulate the law of reverse seepage of liquid in the bed.Finally,the influence of shear on drainage process was revealed by analysis. The results show that when the feed concentration is 10% and the flocculant concentration is 0.01%,the average concentration is 50.10% wt and 55.82% wt respectively under the continuous dense condition without/with shearing,and the internal porosity is 49.90% and 44.18% respectively,indicating that shearing can increase the average concentration while reducing the internal porosity.The number of diversion channels under non-shearing and shearing is 6 and 2 respectively.The shearing reduces the number of diversion channels by 66.7%,the number of outflow channels by 6 and 1 respectively,and the number of outflow channels by 83.3%.The maximum seepage velocity of the liquid in the channel is 9.574×10-6 m/s and 2.592×10-6 m/s respectively,and the maximum flow velocity at the outlet is 5.372×10-6 m/s and 1.468×10-6 m/s respectively.The maximum pressure on the pore surface decreases gradually with the reverse seepage of the liquid.Before shearing,the channel is open and connected.After shearing drainage,the pore volume decreases,the channel closes,and the bed concentration increases further.Adding shear action can increase the concentration of tailings and decrease the porosity of tailings,which has a great impact on the channel.The enhanced drainage mechanism under the shear condition studied in this paper will provide theoretical support for the dense dewatering of tailings mortar and lay a foundation for the preparation of high-concentration tailings mortar.

参考文献

1 杨超,郭利杰,王劼,等. 某金矿大倍线加压充填技术研究与应用[J]. 黄金科学技术,2019,27(1):89-96.
1 YangChao,GuoLijie,WangJie,et al. Study and application of large fill-times-line pressure filling technology in a gold mine[J].Gold Science and Technology,2019,27(1):89-96.
2 单智勇,苏勇松. 膏体充填工作面底板破坏深度研究[J]. 河南理工大学学报(自然科学版),2012,31(1):35-38.
2 ShanZhiyong,SuYongsong. Study on the broken depth of floor failure on the mining face with paste filling[J]. Journal of Henan Polytechnic University(Natural Science),2012,31(1):35-38.
3 吴爱祥,杨莹,程海勇,等. 中国膏体技术发展现状与趋势[J]. 工程科学学报,2018,40(5):517-525.
3 WuAixiang,YangYing,ChengHaiyong,et al. Status and prospects of paste technology in China[J].Chinese Journal of Engineering,2018,40(5): 517-525.
4 李夕兵,刘冰. 硬岩矿山充填开采现状评述与探索[J]. 黄金科学技术,2018,26(4):492-502.
4 LiXibing,LiuBing.Review and exploration on the current situation of filling mining in hard rock mines[J]. Gold Science and Technology,2018,26(4):492-502.
5 陈宏兵,王永成,胡世利. 高水固结尾砂充填工艺的充填材料及用量计算[J]. 黄金科学技术,2007,15(3):58-61.
5 ChenHongbing,WangYongcheng,HuShili.Stuffing and dosage calculation of using high concentration to concrete tailings[J].Gold Science and Technology,2007,15(3):58-61.
6 卞继伟,王新民,肖崇春.全尾砂动态絮凝沉降试验研究[J].中南大学学报(自然科学版),2017,48(12):3278-3283.
6 BianJiwei,WangXinmin,XiaoChongchun. Experimental study on dynamic flocculating sedimentation of unclassified tailings[J].Journal of Central South University(Science and Technology),2017,48(12):3278-3283.
7 焦华喆,王洪江,吴爱祥,等. 全尾砂絮凝沉降规律及其机理[J]. 北京科技大学学报,2010,32(6):702-707.
7 JiaoHuazhe,WangHongjiang,WuAixiang,et al.Rule and mechanism of flocculation sedimentation of unclassified tailings[J].Journal of University of Science and Technology Beijing,2010,32(6):702-707.
8 尹升华,王雷鸣,陈勋,等. 不同堆体结构下矿岩散体内溶液渗流规律[J]. 中南大学学报(自然科学版),2018,49(4): 949-956.
8 YinShenghua,WangLeiming,ChenXun,et al. Seepage law of solution inside ore granular under condition of different heap constructions[J].Journal of Central South University(Science and Technology),2018,49(4):949-956.
9 张钦礼,刘奇,赵建文. 全尾砂絮凝沉降参数预测模型研究[J]. 东北大学学报(自然科学版),2016,37(6):875-879.
9 ZhangQinli,LiuQi,ZhaoJianwen. Study on the parameters prediction model of flocculating sedimentation of crude tailings[J].Journal of Northeastern University(Natural Science),2016,37(6):875-879.
10 王贻明,吴爱祥,左恒,等.微粒渗滤沉积作用对铜矿排土场渗流特性的影响[J]. 中国有色金属学报,2007(12):2074-2078.
10 WangYiming,WuAixiang,ZuoHeng,et al. Effect of particles sedimentation during leaching on seepage characteristic of copper dumps[J]. The Chinese Journal of Nonferrous Metals,2007(12):2074-2078.
11 BürgeraR,DamascenobJ R,KarlsencKH. A mathematical model for batch and continuous thickening of flocculated suspensions in vessels with varying cross section[J]. International Journal of Mineral Processing,2004,73(2/3/4):183-208.
12 尹光志,敬小非,魏作安,等. 粗、细尾砂筑坝渗流特性模型试验及现场实测研究[J].岩石力学与工程学报,2010,29(增2):3710-3718.
12 YinGuangzhi,JingXiaofei,WeiZuo’an,et al. Study of model test of seepage characteristics and field measurement of coarse and fine tailings dam[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Supp.2):3710-3718.
13 高志勇,吴爱祥,焦华喆,等. 全尾砂动态浓密沉降规律研究[J]. 有色金属(矿山部分),2017,69(2):1-6.
13 GaoZhiyong,WuAixiang,JiaoHuazhe,et al. Dynamic thickening sedimentation of unclassified tailings[J]. Nonferrous Metals(Mining Section),2017,69(2):1-6.
14 朱时廷,侯运炳,陈林林,等. 全尾砂沉降性能及其影响因素[J]. 地下空间与工程学报,2017,13(4):931-937.
14 ZhuShiting,HouYunbing,ChenLinlin,et al.Settling performance of total tailings slurry and its influencing factors[J]. Chinese Journal of Underground Space and Engineering,2017,13(4): 931-937.
15 焦华喆,吴爱祥,王洪江,等. 全尾砂絮凝沉降特性实验研究[J]. 北京科技大学学报,2011,33(12):1437-1441.
15 JiaoHuazhe,WuAixiang,WangHongjiang,et al.Experiment study on the flocculation settlement characteristic of unclassified tailings[J].Journal of University of Science and Technology Beijing,2011,33(12):1437-1441.
16 吴爱祥,周靓,尹升华,等. 全尾砂絮凝沉降的影响因素[J]. 中国有色金属学报,2016,26(2):439-446.
16 WuAixiang,ZhouLiang,YinShenghua,et al. Factors affecting flocculation and settlement of tailings[J].The Chinese Journal of Nonferrous Metals,2016,26,(2):439-446.
17 徐祖新,张义杰,王居峰,等.渤海湾盆地沧东凹陷孔二段致密储层孔隙结构定量表征[J]. 天然气地球科学,2016,27(1):102-110.
17 XuZuxin,ZhangYijie,WangJufeng,et al.Quantitative characterization of pore structure of the second member of Kongdian Formation tight reservoirs in Cangdong Sag[J]. Natural Gas Geoscience,2016,27(1):102-110.
18 赵岩,郑娇玉,郭鹏,等.ImageJ软件在泥石流固体颗粒分析中的应用[J].兰州大学学报(自然科学版),2015,51(6): 877-881.
18 ZhaoYan,ZhengJiaoyu,GuoPeng,et al. Application of the ImageJ software in analysis of solid grains in a debris flow gully[J].Journal of Lanzhou University(Natural Science),2015,51(6): 877-881.
19 徐轶,徐青. 基于COMSOL Multiphysics的渗流有限元分析[J].武汉大学学报(工学版),2014,47(2): 165-170.
19 XuYi,XuQing. Finite element analysis of seepage based on COMSOL Multiphysics[J].Engineering Journal of Wuhan University,2014,47(2): 165-170.
20 NiX M,MiaoJ,LüR S,et al. Quantitative 3D spatial characterization and flow simulation of coal macropores based on μCT technology[J]. Fuel,2019,236:382-393.
21 杨保华,吴爱祥,王贻明,等. 堆浸中矿岩散体介质孔隙结构三维可视化[J]. 矿冶工程,2008(2):6-9.
21 YangBaohua,WuAixiang,WangYiming,et al. Three dimensional visualization of pore structure of ore granular media for heap leaching[J].Mining and Metallurgical Engineering,2008(2):6-9.
22 孟明.亭口反调节水库土石坝渗流与稳定数值分析研究[D]. 杨凌:西北农林科技大学,2016.
22 MengMing. Research on Seepage and Stability Numerical Analysis of Tingkou Counter Reservoir Embankment Dam[D]. Yangling:Northwest A&F University,2016.
23 章丽莎. 滨海地区地下水位变化对地基及基坑渗流特性的影响研究[D]. 杭州:浙江大学,2017.
23 ZhangLisha. Study on the Influence of Groundwater Table Variation on the Seepage Behavior of Foundation and Excavation in Coastal Area[D].Hangzhou:Zhejiang University,2017.
24 王瑞,沈振中,陈孝兵. 基于COMSOL Multiphysics的高拱坝渗流—应力全耦合分析[J]. 岩石力学与工程学报,2013,32(增2): 3197-3204.
24 WangRui,ShenZhenzhong,ChenXiaobing.Full coupled analysis of seepage-stress fields for high aech dam based on COMSOL multiphysics[J].Chinese Journal of Rock Mechanics and Engineering,2013,32(Supp.2):3197-3204.
文章导航

/