[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
矿产勘查与资源评价

基于钻孔数据的地质体隐式建模约束规则自动构造方法

  • 王博 ,
  • 贺康 ,
  • 钟德云
展开
  • 中南大学资源与安全工程学院,湖南 长沙 410083
钟德云(1990-),男,福建长汀人,博士后,从事数字矿山和智能开采等方面的研究工作。

王博(1995-),男,河南漯河人,硕士研究生,从事数字矿山和三维地质建模等方面的研究工作。

收稿日期: 2020-10-24

  修回日期: 2021-01-11

  网络出版日期: 2021-07-14

基金资助

国家重点研发计划项目“基于大数据的金属矿开采装备智能管控技术研发与示范”(2019YFC0605304)

湖南省重点研发计划项目“地下隐患和灾害检测监测技术和系统”(2018SK2051)

Automatic Construction Method of Constraint Rules for Implicit Modeling of Geological Bodies Based on Borehole Data

  • Bo WANG ,
  • Kang HE ,
  • Deyun ZHONG
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2020-10-24

  Revised date: 2021-01-11

  Online published: 2021-07-14

本文亮点

针对隐式建模约束规则构造自动化程度较低的问题,提出了一种基于钻孔数据进行地层特征参数自动提取与量化的方法。首先通过分析原始钻孔数据自动提取地层产状来表征地层的全局插值趋势;然后利用局部椭球体搜索邻域钻孔群来构造局部插值趋势,按照不同的搜索策略提取邻域边界点集;最后将构造的约束数据应用于基于径向基和克里金的2种隐式建模插值方法。试验结果表明:该方法兼顾了钻孔数据的异向性,能够很好地模拟沉积层和侵入体,且模型准确性好,符合地质学家的认知规律。

本文引用格式

王博 , 贺康 , 钟德云 . 基于钻孔数据的地质体隐式建模约束规则自动构造方法[J]. 黄金科学技术, 2021 , 29(3) : 345 -354 . DOI: 10.11872/j.issn.1005-2518.2021.03.189

Highlights

Three-dimensional geological modeling can be divided into traditional wireframe modeling and implicit modeling.Compared with traditional wireframe modeling,implicit modeling method does not require a large number of human-computer interactions,and has the advantages of high model quality,repeatable process and fast local dynamic update speed.After years of research,various interpolation methods for implicit modeling have been developed,but the constraint data required for implicit modeling interpolation requires a lot of preprocessing,for a wide range of geological modeling work,manual processing of interpolation constraint data requires a lot of time and energy for geologists,and the operation of geological modeling based on manual processing is semi-automatic implicit modeling.In order to improve the automation degree of geologic body implicit modeling method,we proposed a method of automatic extraction and quantification of formation characteristic parameters based on borehole data,which can take into account the global occurrence characteristics of stratum and the local occurrence trend of borehole,and be used to construct interpolation constraints that control the geometry of different geological interfaces.This method analyzes the original geological drilling data,automatically extracts the occurrence of the formation to characterize the global interpolation trend of the formation,and then uses the local ellipsoid search to construct the neighborhood drilling group,extracts the field boundary point set according to different search strategies,and finally calculates the local occurrence parameters to construct local interpolation trends.Based on the above ideas,combined with the implicit modeling method of geological bodies considering the constraints of stratigraphic sequence,a complete geological body model that conforms to stratigraphic characteristics and satisfies the laws of stratigraphic sequence was constructed.The data extracted by this method were used to construct a single geological model of a uranium deposit in Xinjiang using the potential field method and the HRBF method,after that,a comprehensive model of complex shapes was constructed with full consideration of the constraints of geological rules.Comparison of the geometric form of a single model built by the two interpolation methods and the comparison of the exploration line profile of the overall model,the research results show that the new method takes into account the geological rules and constraints,can simulate sedimentary strata and intrusions strata well,and the model has good accuracy and conforms to the cognitive rules of geologists.

[an error occurred while processing this directive]

贵金属牛市重启时机已成熟

2021年6月10日,高级大宗商品策略师麦克格隆(Mike McGlone)表示,2 000美元是金价(1 902.74,6.34,0.33%)面临的阻力位,但由于美国就业形势糟糕,金价最终将突破该阻力位。麦克格隆在报告中表示:“可能不需等到看到美国6月份失业率上升,金价就能超过2 000美元,银价达到30美元。4月份和5月份的美国失业报告弱于市场预期,支持了我们的主要观点,即黄金和白银(28.19,0.16,0.57%)重新进入牛市的时机已经成熟。2 000美元左右仍是黄金的关键阻力位,我们预计金价最终会突破这一位置。”

从技术角度来看,黄金当前的价格水平“相对于原油(69.97,-0.32,-0.46%)的更持久的上涨轨迹而言,处于不可持续的大幅折价”。麦格隆指出:“黄金与原油的价格比值正有利于贵金属价格走强。这是供应弹性较低、最重要的贵金属商品黄金与供应弹性最高的原油之间的较量。在一个快速发展的技术和似乎无限的财政和货币刺激试图抵消通缩力量的世界里,黄金与布油价格的比值仍低于历史平均水平,这限制了金价的进一步下跌。”

如果布油跌回70美元以下,金价也可能维持在每盎司1 900美元以上的水平。今年春季以来,基本面环境的大转变释放了黄金上涨的能力,因为美国国债收益率和比特币这2个主要障碍已经消失。麦格隆指出:“黄金回调最糟糕的时期似乎已经过去,我们认为技术和基本面因素预示着牛市的重启。比特币牛市和债券收益率走高带来的强劲逆风似乎已经走到了尽头。”

目前的金价走势与2018年类似,当时金价为每盎司1 200美元,而美国10年期国债的峰值约为3%。麦克格隆补充道:“如果2021年1.75%左右的收益率高点已经出现,那么黄金的底部很可能也已经见底。与3年前的黄金低谷相比,美国的不充分就业率接近5%,而现在是10%。”麦克格隆还在报告中指出,银价的走势看起来也很有希望,随时可能追随黄金和铜的脚步,再创新高。

麦克格隆表示:“由于其独特的贵金属价值和工业价值,在基本面和技术支撑下,白银潜在升值潜力在大宗商品中名列前茅。当前白银价格较峰值大幅下跌,而全球新能源汽车产业加速发展、碳中和经济的加速推进,和量化宽松趋势的延续,也有利于白银。白银的基本面可能在2021年有所改善,需求可能比2020年增长10%以上,尤其是受到工业应用的推动。我们认为,随着金条和金币投资以及珠宝购买(尤其是在美洲)的进一步增加,贵金属市场的强势局面将持续。”

脚注

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-3-345.shtml

Aug C2004.3D Geological Modelling and Uncertainty: The Potential-field Method[D].Paris:Ecole Nationale Superieure des Mines de Paris.

Baker K A Pixley A F1975.Polynomial interpolation and the Chinese Remainder Theorem for algebraic systems[J].Mathematische Ztschrift143(2):165-174.

Bi Lin Zhao Hui Li Yalong al et2018.Biased-SVM and Poisson surface based three-dimensional automatic modeling method for orebodies[J].Journal of China University of Mining & Technology47(5):1123-1130.

Calcagno P Chilès J P Courrioux G al et2008.Geological modelling from field data and geological knowledge:Part I.Modelling method coupling 3D potential-field interpolation and geological rules[J].Physics of the Earth and Planetary Interiors,171(1/2/3/4):147-157.

Cuomo S Galletti A Giunta G al et2017.Reconstruction of implicit curves and surfaces via RBF interpolation[J].Applied Numerical Mathematics,116:157-171.

Dong Zhaogang2000.Calculate the occurrence of the surface by three-point coordinates in a plane of space[J].Yunnan Geology,(3):304-307.

Fleishman S Cohen-Or D,Silva, al et2005.Robust moving least-squares fitting with sharp features[J]. ACM Transaction on Graphics24(3):544-552.

Frank T Tertois A L Mallet J L2007.3D-reconstruction of complex geological interfaces from irregularly distributed and noisy point data[J].Computers & Geoences33(7):932-943.

Guo J Wu L Zhou W al et2018.Section-constrained local geological interface dynamic updating method based on the HRBF surface[J].Journal of Structural Geology,107:64-72.

Guo Jiateng Wu Lixin Zhou Wenhui2016.Implicit automatic 3D modeling method of ore body based on radial basis function surface[J].Journal of China Coal Society41(8):2130-2135.

Lajaunie C Courrioux G Manuel L1997.Foliation fields and 3D cartography in geology:Principles of a method based on potential interpolation[J].Mathematical Geology29(4):571-584.

Lu G Y Wong D W2008.An adaptive inverse-distance weighting spatial interpolation technique[J].Computers & Geoences34(9):1044-1055.

McInerney P Guillen A Courrioux G al et2005.Building 3D geological models directly from the data? A new approach applied to Broken Hill,Australia[J].Digital Mapping Te-chniques’05,5:119-130.

Miguel D L V Schaaf A Wellmann F2019.GemPy 1.0:Open-source stochastic geological modeling and inversion[J].Geoscientific Model Development12(1):1-32.

Olivier R Cao H Q2012.Nearest neighbor value interpolation[J].International Journal of Advanced Computer Sciences and Application3(4):25-30.

Skala V2017.RBF interpolation with CSRBF of large data sets[J].Procedia Computer Science,108:2433-2437.

Thornton J M Mariethoz G Brunner P2018.A 3D geological model of a structurally complex Alpine region as a basis for interdisciplinary research[J].Scientific Data5(1):1-20.

Wang J Zhao H Bi L al et2018.Implicit 3D modeling of ore body from geological boreholes data using hermite radial basis functions[J].Minerals8(10):443.

Wu Lixin Wang Yunjia Ding Enjie al et2012.Three discussions on digital mines:Leveraging the internet of things to ensure mine safety and intelligent mining[J].Journal of China Coal Society37(3):357-365.

Zhang Shen Ding Enjie Zhao Xiaohu al et2007.Digital mine and its two basic platform construction[J].Journal of China Coal Society,(9):997-1001.

Zhong D Y Wang L G Bi L al et2019a.Implicit modeling of complex orebody with constraints of geological rules[J].Transactions of Nonferrous Metals Society of China29(11):2392-2399.

Zhong D Y Wang L G Bi L al et2019b.Implicit surface reconstruction based on generalized radial basis functions interpolant with distinct constraints[J].Applied Mathematical Modelling,71:408-420.

毕林,赵辉,李亚龙,等,2018.基于Biased-SVM和Poisson曲面矿体三维自动建模方法[J].中国矿业大学学报47(5):1123-1130.

董兆岗,2000.通过空间一平面内三点坐标计算该面产状[J].云南地质,(3):304-307.

郭甲腾,吴立新,周文辉,2016.基于径向基函数曲面的矿体隐式自动三维建模方法[J].煤炭学报41(8):2130-2135.

吴立新,汪云甲,丁恩杰,等,2012.三论数字矿山——借力物联网保障矿山安全与智能采矿[J].煤炭学报37(3):357-365.

张申,丁恩杰,赵小虎,等,2007.数字矿山及其两大基础平台建设[J].煤炭学报,(9):997-1001.

文章导航

/

[an error occurred while processing this directive]