收稿日期: 2020-12-04
修回日期: 2021-04-21
网络出版日期: 2022-03-07
基金资助
藏南地质矿产调查评价项目“广东洽水—横石地区花岗岩类的成因及其与成矿关系”(12120114083071)
Isotope Geochemical Characteristics and Geological Significance of Skarn Type Iron Polymetallic Deposit in Huaiji Area,Guangdong Province
Received date: 2020-12-04
Revised date: 2021-04-21
Online published: 2022-03-07
怀集地区位于广东省南岭成矿带中段,成矿地质条件优越,区内已发现铁、铅、锌和银等大量矿床(点),但这些矿床与花岗岩的成因关系尚未得到深入研究。为确定该区成矿物质来源,开展了花岗岩体和典型矿床S、Pb、H和O同位素地球化学研究工作。研究结果表明:矿石δ34SCDT值为-0.12‰~6.58‰,平均值为3.23‰,峰值出现在3‰~5‰之间,呈现明显的塔式分布,由于矿石中没有硫酸盐,成矿流体中硫绝大多数为H2S,处于低氧逸度f(O2)和低pH值环境,且黄铁矿的δ34S值近似等于流体的δ34S∑S值,说明其硫源主要来自深源,少部分来自地层海相碳酸盐岩中的硫酸盐物质;绝大多数矿石Pb同位素组成与晚白垩世花岗岩钾长石Pb同位素组成相似,但矿石的207Pb/204Pb值总体略低,说明成矿物质可能主要来源于花岗岩,在成矿时有少量幔源物质的加入;将研究区与晚白垩世花岗岩有关的代表性矿床石英流体H、O同位素测试结果投到流体H、O同位素组成图解中,除将军头铁多金属矿床之外,全落入岩浆水范围,表明成矿热液主要来源于岩浆水。同位素地球化学分析结果表明:研究区与~100 Ma花岗岩有关的矽卡岩型和矽卡岩—热液脉型矿床的成矿物质主要来源于晚白垩世花岗岩。
冼源宏 , 詹华思 , 李健唐 . 广东怀集地区矽卡岩型铁多金属矿床同位素地球化学特征及其地质意义[J]. 黄金科学技术, 2021 , 29(6) : 805 -816 . DOI: 10.11872/j.issn.1005-2518.2021.06.217
The Huaiji area belongs to the middle section of the Nanling metallogenic belt in Guangdong Province.The metallogenic geological conditions of the Huaiji area are superior.A large number of deposits(points) such as iron,lead,zinc and silver have been found in the area,but their genetic relationship with granite has not been studied in depth.In order to determine the source of minerals,S,Pb,H and O isotope geochemistry studies were carried out to explore the source of metallogenic minerals.On the basis of the background analysis of ore-forming elements,the Pb and S isotope analysis of sulfide in the ore,and the O,H,C isotope analysis of the quartz and carbonate in the altered rock and ore were carried out to trace the mineralization and the source of ore-forming fluids reveals the coupling relationship between magmatic activity and mineralization.The results show that:δ34SCDT(‰) is -0.12‰~6.58‰,the mean value is 3.23‰,the peak is in the 3‰~5‰,there is a clear tower-like distribution.Since there is no sulfate in the ore,most of the S in the ore-forming fluid is H2S,which is in a low f(O2) and low pH environment.The δ34S value of pyrite is approximately equal to the δ34S∑S value of the fluid.Therefore,its sulfur source mainly comes from deep sources,and a small part comes from sulfate materials in stratigraphic marine carbonate rocks.The Pb isotopic composition of most ores is similar to that of Late Cretaceous granite potash feldspar,but the 207Pb/204Pb value of the ores is generally slightly lower.The ore-forming material may mainly come from granite,but there is a small amount of mantle-derived material during the mineralization.The test results of the H and O isotopes of the representative quartz fluids related to the Late Cretaceous granites in the survey area are input into the fluid hydrogen and oxygen isotope composition diagram.Except for the Jiangjuntou deposit,all fall into the range of magmatic water,indicating the main source of ore-forming hydrothermal fluids in magma water.Through the study,it is further confirmed that the ore-forming materials and ore-forming fluids of the skarn type and skarn-hydrothermal vein type deposits in Huaiji area are mainly derived from the late Cretaceous granite.
null | No.9 Gold Geological Party of CAPF,2017.1∶50000 regional geological survey report(Qiashuiwei,Hengshi wei)[R].Haikou:No.9 Gold Geological Party of CAPF. |
null | Chen Yuchuan, Wang Denghong, Xu Zhigang, al et,2014.Outline of regional metallogeny of ore deposits associated with the Mesozoic Magmatism in South China[J].Geotectonica et Metallogenia,38(2):219-229. |
null | Dong R, Wang H, Li W Q, al et,2021.The geology,magnetite geochemistry,and oxygen isotopic composition of the Akesayi skarn iron deposit,Western Kunlun orogenic belt,Xinjiang,northwest China:Implications for ore genesis[J].Ore Geology Reviews,130:103854. |
null | Fu Jianming, Ma Liyan, Cheng Shunbo, al et,2013.Metallogenesis of W(Sn) deposits and their exploration in Nanling range,China[J]. Geological Journal of China Universities,19(2):202-212. |
null | Gao Jianfeng, Ling Hongfei, Shen Weizhou,2005.Geochemistry and petrogenesis of Lianyang granite composite,west Guangdong Province[J].Acta Petrologica Sinica,21(6):1645-1656. |
null | Hu Ruizhong, Bi Xianwu, Peng Jianwu, al et,2007.Some problems concerning relationship between Mesozoic-Cenozoic lithospheric extension and uranium metallogenesis in South China[J].Mineral Deposits,26(2):139-152. |
null | Hu Xiaokui, Jiang Shufang,2013.Geological features and prospecting potential analysis of the Bailianlonghu iron deposit in Yangshan County[J]. Gansu Metallurgy,35(4):69-73. |
null | Hua Renmin, Zhang Wenlan, Chen Peirong, al et,2013.Relationship between Caledonian granites and large-scale mineralization in South China[J].Geological Journal of China Universities,19(1):1-11. |
null | Huang Fan, Wang Denghong, Chen Zhenyu, al et,2014.Preliminary study on metallogenic specialization of the granites related to the molybdenum deposits in the Nanling region[J].Geotectonica et Metallogenia,38(2):239-254. |
null | Jiang J S, Gao S B, Zheng Y Y, al et,2020.Geological,geochemical,and mineralogical constraints on the genesis of the polymetallic Pb-Zn-rich Nuocang skarn deposit,western Gangdese,Tibet[J].Minerals,10(10):839. |
null | Li H, Palinka? L A, Watanabe K, al et,2018.Petrogenesis of Jurassic A-type granites associated with Cu-Mo andW-Sn deposits in the central Nanling region,South China:Relation to mantle upwelling and intra-continental extension[J].Ore Geology Reviews,92:449-462. |
null | Li Jing, Sun Yali, He Ke, al et,2010.Improvement and application of Re-Os isotopic dating method for Molybdenite[J].Acta Petrologica Sinica,26(2):642-648. |
null | Liao Fake,2000.Development and utilization prospects of boron and tin mineral resources in Northwest Guangdong[J].Chinese Geology,27(2):33-34. |
null | Lin Xiuguang, Gu Ximing, Luo Jun,2006.The characteristics of the Qingpi copper-iron deposit in Huaiji and its prospecting direction[J].West-China Exploration Engineering,18(7):127-129. |
null | Mao Jingwen, Xie Guiqing, Guo Chunli, al et,2008.Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings [J].Geological Journal of China Universities,14(4):510-526. |
null | Mao Jingwen, Xie Guiqing, Li Xiaofeng, al et,2004. Mesozoic large scale mineralization and multiple lithospheric extension in South China[J].Earth Science Frontiers,11(1):45-55. |
null | Ministry of Geology and Mineral Resources of the People’s Republic of China,1998. Isotopic analysis methods of geolo-gical samples:~0184.22-1997[S].Beijing:Mi-nistry of Geology and Mineral Resources of the People’s Republic of China,1998. |
null | Wang Denghong, Chen Zhenghui, Chen Yuchuan, al et,2010.New data of the rock-forming chronology of diagenesis and mineralization of important mineral deposits in my country[J].Acta Geology,84(7):1030-1040. |
null | Wang Denghong, Chen Zhenyu, Huang Fan, al et,2014.Discussion on metallogenic specialization of the magmatic rocks and related issues in the Nanling region[J].Geotectonica et Metallogenia,38(2):230-238. |
null | Wang D H, Huang F, Wang Y, al et,2019.Regional metallogeny of Tungsten-tin-polymetallic deposits in Nanling region,South China[J].Ore Geology Reviews,120:103305. |
null | Xie Caifu,Yuan Yongsheng,2017.Genesis of granitoids in Qiashui-Hengshi area and its relationship with mineralization[R]. Haikou:No.9 Gold Geological Party of CAPF. |
null | Xu R, Deng M G, Li W C, al et,2021.Origin of the giant Luziyuan Zn-Pb-Fe(-Cu) distal skarn deposit,Baoshan block,SE Tibet:Constraints from Pb-Sr isotopes,calcite C-O isotopes,trace elements and Sm-Nd dating[J].Journal of Asian Earth Sciences,205:104587. |
null | Zartman R E, Doe B R,1981.Plumbotectonics: The model[J].Tectonophysics,75:135-162. |
null | Zhang J, Liu X X, Zeng Z L, al et,2021.Age constraints on the genesis of the Changkeng tungsten deposit,Nanling region,South China[J].Ore Geology Reviews,134:104134. |
null | Zhang Xiaoge, Xie Caifu, Zhang Zhao, al et,2020.Zircon LA-ICP-MS U-Pb geochronology of granitoide in Qiashui area,Guangdong Province:Constraints on the~100 Ma tectonic environment of interior South China[J].Geology in China.. |
null | Zhao Zheng, Wang Denghong, He Yu, al et,2014.Metallogenic specialization of magmatic rocks associated with the lead-zinc deposits in the Nanling region[J].Geotectonica et Metallogenia,38(2):289-300. |
null | Zhu D P, Li H, Algeo T J, al et,2021.The prograde-to-retrograde evolution of the Huangshaping skarn deposit (Nanling Range,South China)[J].Mineralium Deposita,56:1087-1110. |
null | Zhu Zuliang,2007.Geological characteristics of Fengtang copper-lead-zinc deposit and analysis of prospecting prospects around it[J]. Neijiang Technology,(8):90-91. |
null | 陈毓川,王登红,徐志刚,等,2014.华南区域成矿和中生代岩浆成矿规律概要[J].大地构造与成矿学,38(2):219-229. |
null | 付建明,马丽艳,程顺波,等,2013. 南岭地区锡(钨)矿成矿规律及找矿[J].高校地质学报,19(2):202-212. |
null | 高剑峰,凌洪飞,沈渭洲,2005.粤西连阳复式岩体的地球化学特征及其成因研究[J].岩石学报,21(6):1645-1656. |
null | 胡瑞忠,毕献武,彭建堂,等,2007.华南地区中生代以来岩石圈伸展及其与铀成矿关系研究的若干问题[J].矿床地质,26(2):139-152. |
null | 胡孝奎,江舒芳,2013.阳山县白莲龙虎铁矿矿床地质特征及找矿潜力分析[J].甘肃冶金,35(4):69-73. |
null | 华仁民,张文兰,陈培荣,等,2013.初论华南加里东花岗岩与大规模成矿作用的关系[J].高校地质学报,19(1):1-11. |
null | 黄凡,王登红,陈振宇,等,2014.南岭钼矿的岩浆岩成矿专属性初步研究[J].大地构造与成矿学,38(2):239-254. |
null | 李晶,孙亚莉,何克,等,2010.辉钼矿Re-Os同位素定年方法的改进与应用[J].岩石学报,26(2):642-648. |
null | 廖发科,2000.粤西北硼锡矿产资源开发利用前景[J].中国地质,27(2):33-34. |
null | 林秀广,顾锡明,罗君,2006.怀集青皮铜铁矿矿床特征及找矿方向[J].西部探矿工程,18(7):127-129. |
null | 毛景文,谢桂青,郭春丽,等,2008.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,14(4):510-526. |
null | 毛景文,谢桂青,李晓峰,等,2004.华南地区中生代大规模成矿作用与岩石圈多阶段伸展[J].地学前缘,11(1):45-55. |
null | 王登红,陈振宇,黄凡,等,2014.南岭岩浆岩成矿专属性及相关问题探讨[J].大地构造与成矿学,38(2):230-238. |
null | 王登红,陈郑辉,陈毓川,等,2010.我国重要矿产地成岩成矿年代学研究新数据[J].地质学报,84(7):1030-1040. |
null | 武警黄金第九支队,2017.洽水圩、横石圩幅1∶5万区域地质调查报告[R].海口:武警黄金第九支队. |
null | 谢财富,袁永盛,2017.广东洽水—横石地区花岗岩类的成因及其与成矿关系报告[R].海口:武警黄金第九支队. |
null | 张小葛,谢财富,张昭,等,2020.广东洽水地区花岗岩体LA-ICP-MS锆石U-Pb年代学:对华南内陆~100 Ma构造环境的制约[J].中国地质,. |
null | 赵正,王登红,何玉,等,2014.南岭地区与铅锌矿有关岩浆岩的成矿专属性研究[J].大地构造与成矿学,38(2):289-300. |
null | 中华人民共和国地质矿产部,1998. 同位素地质样品分析方法:~0184.22-1997[S].北京:中华人民共和国地质矿产部. |
null | 朱祖良,2007.凤塘铜铅锌矿床地质特征及周边找矿前景分析[J].内江科技,(8):90-91. |
/
〈 | 〉 |