img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索
采选技术与矿山管理

基于PCA-RBF网络模型的硫化矿自燃安全性研究

  • 杨珊 ,
  • 李文文 ,
  • 陈建宏
展开
  • 中南大学资源与安全工程学院,湖南 长沙 410083
杨珊(1983-),男,湖北监利人,副教授,从事矿业经济与采矿系统工程研究工作。yangshan@csu.edu.cn

收稿日期: 2022-06-21

  修回日期: 2022-09-04

  网络出版日期: 2023-01-06

基金资助

国家自然科学基金青年基金项目“基于人工智能的矿山技术经济指标动态优化”(51404305)

Study on Spontaneous Combustion Safety of Sulfide Ore Based on PCA-RBF Network Model

  • Shan YANG ,
  • Wenwen LI ,
  • Jianhong CHEN
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2022-06-21

  Revised date: 2022-09-04

  Online published: 2023-01-06

摘要

为了更加准确地预测硫化矿自燃安全性,综合考虑硫化矿自燃倾向性及火灾后果严重性,将硫化矿自燃安全性划分为9个等级,并选取矿山含硫量、矿山含碳量、矿石温度、矿石堆放时间、采场人员数量、氧气浓度和采场矿层厚度作为评价因素集。利用主成分分析法(Principal Component Analysis,PCA)对94个采场样本数据进行降维处理,得到包含70%以上原始信息的3个主成分。将降维后的84组数据作为基于径向基函数神经网络(Radial Basis Function Neural Network,RBF)预测模型的训练样本,10组数据作为检验样本进行硫化矿自燃安全性预测。最后分别利用十折交叉验证法和留一法对94组检验样本的自燃安全性预测结果进行检验,得到硫化矿自燃安全性预测准确率分别为92.55%和91.49%。研究结果表明:PCA-RBF网络模型对硫化矿自燃安全性的预测性能良好,且优于未经主成分分析的结果。

本文引用格式

杨珊 , 李文文 , 陈建宏 . 基于PCA-RBF网络模型的硫化矿自燃安全性研究[J]. 黄金科学技术, 2022 , 30(6) : 958 -967 . DOI: 10.11872/j.issn.1005-2518.2022.06.081

Abstract

Spontaneous combustion of sulfide ore will cause a series of environmental,safety,and property hazards.It is of great practical significance to predict the tendency of spontaneous combustion of sulfide ore and the severity of fire consequences more accurately for the realization of more safe and efficient mining of sulfide ore.In this paper,seven factors affecting the spontaneous combustion tendency of sulfide ore were compre-hensively considered as the evaluation index factors,including mine sulfur content,mine carbon content,ore temperature,ore stacking time,the number of stope personnel,oxygen concentration,and stope ore layer thickness.The spontaneous combustion safety of sulfide ore was divided into nine grades,representing different spontaneous combustion tendencies and severity of fire consequences.94 sets of actual stope data were collected,and the principal component analysis (PCA) was used to reduce the dimension of the 94 sets of stope data.Three principal components containing more than 70% of the original information were obtained.84 sets of data after dimension reduction were used as training samples of the radial basis function neural network (RBF) prediction model,and 10 groups of test samples were used to establish the PCA-RBF self-ignition prediction model of sulfide ore.The 10-fold cross-validation method and leave one-out method were used to verify the prediction results of the PCA-RBF model with the actual results.The prediction accuracy of the PCA-RBF model is 92.55%,and the correlation coefficient is 0.94.The prediction accuracy of the PCA-RBF model is 91.49%,and the correlation coefficient is 0.97.Both of the two verification methods show that the PCA-RBF model has good applicability to the prediction of spontaneous combustion safety of sulfide ores.The results of a small amount of prediction deviation are also less different from the actual results,and the overall prediction accuracy is higher than that of the RBF model.The results show that the radial basis function neural network based on principal component analysis has good prediction performance for the spontaneous combustion safety of sulfide ore.The prediction accuracy of the sample is above 90%,and the correlation coefficient is greater than 0.9,which is better than the results without principal component analysis.PCA-RBF model can be used to pre-dict the grade of spontaneous combustion safety of sulfide ore,which can guide the safety production of mine.

参考文献

null Cai Yilun, Yang Fuqiang, Liu Xiaoxia,2019.Early warning of spontaneous combustion of sulfide ore and its application based on RBF neural network[J].Nonferrous Metals Engineering,9(7):72-78.
null Gao Feng, Xiao Ronglan,2016.Fuzzy evaluation on spontaneous combustion tendency of sulfide ores based on comprehensive weights[J].Mining Research and Development,36(11):28-31.
null Gu H, Song B F,2009.Study on effectiveness evaluation of weapon systems based on grey relational analysis and TOPSIS[J].Journal of Systems Engineering and Electronics,20(1):106-111.
null Han Chaoqun, Chen Jianhong, Zhou Zhiyong,et al,2019.Research on prediction of rock mass blastability classification based on PCA-SVM Model[J].Gold Science and Technology,27(6):879-887.
null Han Ziqing, Li Zijun, Xu Yuanyuan,2022.Evaluation of spontaneous combustion tendency of sulfide ore based on partial ordered set[J].Gold Science and Technology,30(1):105-112.
null Huang Yuejun,2000.Study on the spontaneous combustion of high temperature sulphride ores and its control technology[J].Non-Ferrous Mining and Metallurgy,(1):13-15.
null Li Yameng, Ding Junhang, Sun Baonan,et al,2022.Comparison of short-term prediction effects of the sea surface temperature and salinity based on BP and RBF neural network[J].Advances in Marine Science,40(2):220-232.
null Li Zijun,2007.Investigation on the Mechanism of Spontaneous Combustion of Culphide Ores and the Key Technologies for Preventing Fire[D].Changsha:Central South University.
null Li Zijun, Gu Desheng, Wu Chao,2004.Dangerousness assessment of ore spontaneous combustion in high temperature high sulfur deposits[J].Metal Mine,33(5):57-59,64.
null Li Zijun, Wang Fasong, Ma Shubao,2009.Safety assessment of the spontaneous combustion tendency of sulfide ores based on AHP and SPA[J].Science & Technology Review,27(19):69-73.
null Luo Kai, Wu Chao, Yang Fuqiang,et al,2014a.Bayes discriminant analysis of spontaneous combustion tendency classification of sulfide minerals in metal mines[J].Journal of Central South University (Science and Technology),45(7):2244-2249.
null Luo Kai, Wu Chao, Yang Fuqiang,2014b.Management res-ponse system to ores spontaneous combustion based on dominance—Based rough sets and grey target[J].Journal of Central South University (Science and Technology),45(1):223-230.
null Mao Dan, Chen Yuanjiang,2008.Characteristic overview and analysis of spontaneous combustion of sulfide ores[J].Industrial Minerals and Processing,(1):34-38.
null Navarra A, Graham J T, Somot S,et al,2010.M?ssbauer quantification of pyrrhotite in relation to self-heating[J].Minerals Engineering,23:652-658.
null Pan W, Wu C, Li Z J,et al,2017.Evaluation of spontaneous combustion tendency of sulfide ore heap based on nonlinear parameters[J].Journal of Central South University,24(10):2431-2437.
null Shao Liangshan, Ma Han, Wen Tingxin,2014.Coal spontaneous combustion prediction model of support vector machine combined with factor analysis[J].Journal of Liaoning Technical University (Natural Science),33(4):433-436.
null Wang Jianbo, Peng Longbiao, Li Na,et al,2017.Fire risk evaluation of subway station based on PCA-RBF neural network[J].Industrial Safety and Environmental Protection,43(9):67-70.
null Xie Zhengwen, Wu Chao, Li Zijun,et al,2012.Evaluation on spontaneous combustion tendency of sulfide ores based on entropy and set pair analysis theory[J].Journal of Central South University (Science and Technology),43(5):1858-1863.
null Xu Chunming, Wu Chao, Chen Yuanjiang,2008.Grey system approach in application to the prediction of spontaneous combustion of sulfide ore residue[J].Journal of Safety and Environment,(4):125-127.
null Yang Fuqiang,2011.Study on the Mechanism and Forecasting Technologies for Spontaneous Combustion of Sulfide Minerals in Metal Mines[D].Changsha:Central South University.
null Yang Fuqiang, Chen Bohui,2012.Application of attribute interval recognition model to comprehensive assessment of spontaneous combustion tendency of sulfide ores[J].China Safety Science Journal,22(1):70-75.
null Yang Fuqiang, Liu Guangning, Guo Lele,2015.GA-BP neural network model and its application to spontaneous combustion tendency classification of sulfide ores[J].Journal of Natural Disasters,24(4):227-232.
null Yang Shan, Yuan Mingke, Su Kaijun,et al,2022.Analysis of internal-caused fire in the stopes based on chain variable precision rough fuzzy set[J].Gold Science and Technology,30(1):93-104.
null Zhang Lining, Fan Liangqiong, An Jing,et al,2021.Fire safety assessment of college dormitory based on PCA-RBF[J].Journal of Safety and Environment,21(3):921-926.
null Zhang Yue, Liu Jie, Fu Yu,et al,2021.Research on prediction of spontaneous combustion tendency of sulfide ores based on game theory and set pair analysis[J].Nonferrous Metals(Mining Section),73(3):141-146.
null 蔡逸伦,阳富强,刘晓霞,2019.硫化矿石自燃灾害预警的RBF神经网络模型及应用[J].有色金属工程,9(7):72-78.
null 高峰,肖蓉兰,2016.基于综合权重的硫化矿石自燃倾向性评价研究[J].矿业研究与开发,36(11):28-31.
null 韩超群,陈建宏,周智勇,等,2019.基于主成分分析—支持向量机模型的矿岩可爆性等级预测研究[J].黄金科学技术,27(6):879-887.
null 韩梓晴,李孜军,徐圆圆,2022.基于偏序集的硫化矿石自燃倾向性评价[J].黄金科学技术,30(1):105-112.
null 黄跃军,2000.高温高硫矿床矿石自燃性及防治技术研究[J].有色矿冶,(1):13-15.
null 李亚蒙,丁军航,孙宝楠,等,2022.BP和RBF神经网络应用于海表温盐短期预测效果对比[J].海洋科学进展,40(2):220-232.
null 李孜军,2007.硫化矿石自燃机理及其预防关键技术研究[D].长沙:中南大学.
null 李孜军,古德生,吴超,2004.高温高硫矿床矿石自燃危险性的评价[J].金属矿山,33(5):57-59,64.
null 李孜军,汪发松,马树宝,2009.基于层次分析法和集对理论的硫化矿自燃倾向性评定[J].科技导报,27(19):69-73.
null 罗凯,吴超,阳富强,等,2014a.矿山硫化矿自燃倾向性分级的Bayes判别法及应用[J].中南大学学报(自然科学版),45(7):2244-2249.
null 罗凯,吴超,阳富强,2014b.基于优势关系粗糙集与灰靶决策的矿石自燃管理应对体系[J].中南大学学报(自然科学版),45(1):223-230.
null 毛丹,陈沅江,2008.硫化矿石堆氧化自燃全过程特征综述与分析[J].化工矿物与加工,(1):34-38.
null 邵良杉,马寒,温廷新,2014.因子分析与支持向量机相结合的煤炭自燃预测[J].辽宁工程技术大学学报(自然科学版),33(4):433-436.
null 王建波,彭龙镖,李娜,等,2017.基于PCA-RBF神经网络的地铁车站火灾风险评估[J].工业安全与环保,43(9):67-70.
null 谢正文,吴超,李孜军,等,2012.基于信息熵和集对分析理论的硫化矿石自燃倾向性判定[J].中南大学学报(自然科学版),43(5):1858-1863.
null 许春明,吴超,陈沅江,2008.硫化矿石堆自燃的灰色预测研究[J].安全与环境学报,(4):125-127.
null 阳富强,2011.金属矿山硫化矿自然发火机理及其预测预报技术研究[D].长沙:中南大学.
null 阳富强,陈伯辉,2012.硫化矿石自燃倾向性评价的属性区间识别模型[J].中国安全科学学报,22(1):70-75.
null 阳富强,刘广宁,郭乐乐,2015.硫化矿石自燃倾向性等级划分的GA-BP神经网络模型及应用[J].自然灾害学报,24(4):227-232.
null 杨珊,袁鸣珂,苏凯俊,等,2022.基于链式变精度粗糙模糊集采场内因火灾分析[J].黄金科学技术,30(1):93-104.
null 张立宁,范良琼,安晶,等,2021.基于PCA-RBF的高校学生宿舍火灾安全评价及应用[J].安全与环境学报,21(3):921-926.
null 张悦,刘杰,傅钰,等,2021.基于博弈论集对分析的硫化矿石自燃倾向预测方法研究[J].有色金属(矿山部分),73(3):141-146.
文章导航

/