[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

基于PEMD-MPE算法的露天矿爆破振动信号降噪方法

  • 代树红 , 1 ,
  • 张战军 , 1 ,
  • 柳凯 2 ,
  • 郑昊 1 ,
  • 孙清林 1
展开
  • 1. 辽宁工程技术大学力学与工程学院,辽宁 阜新 123000
  • 2. 阜新矿业(集团)有限责任公司恒大煤矿,辽宁 阜新 123000
张战军(1995-),男,河南周口人,硕士研究生,从事灾害力学研究工作。

代树红(1978-),男,辽宁阜新人,教授,从事实验力学研究工作。

收稿日期: 2023-06-12

  修回日期: 2023-10-15

  网络出版日期: 2024-03-22

基金资助

国家自然科学基金重点项目“乌海能源有限责任公司五虎山煤矿爆破震动评价”(U183920051)

辽宁省教育厅基础项目“乌海能源有限责任公司五虎山煤矿爆破震动评价”(LJ2019JL006)

辽宁省高等学校创新人才“乌海能源有限责任公司五虎山煤矿爆破震动评价”(LR2019031)

Noise Reduction Method of Open-pit Blasting Vibration Signal Based on PEMD-MPE Algorithm

  • Shuhong DAI , 1 ,
  • Zhanjun ZHANG , 1 ,
  • Kai LIU 2 ,
  • Hao ZHENG 1 ,
  • Qinglin SUN 1
Expand
  • 1. School of Mechanics and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning, China
  • 2. Hengda Coal Mine of Fuxin Mining(Group)Co. , Ltd. , Fuxin 123000, Liaoning, China

Received date: 2023-06-12

  Revised date: 2023-10-15

  Online published: 2024-03-22

摘要

为了去除露天矿山爆破振动信号中混入的噪声成分,提出了一种基于PEMD-MPE算法的降噪方法。该算法通过自适应性正交经验模态分解(PEMD)得到完全正交的本征模态函数(IMF)分量,然后对各个IMF分量进行多尺度排列熵(MPE)的随机性检测,成功确定其中的噪声分量并将其去除。采用该算法对实测的露天矿山爆破振动信号进行降噪处理。结果表明:相比EMD-MPE和EEMD-MPE算法,PEMD-MPE算法的信噪比分别提高了3.520 dB和1.107 dB,且重构标准差和均方根误差最小,说明该算法不仅能够有效去除爆破振动信号中的噪声成分,还能有效保留真实信号。

本文引用格式

代树红 , 张战军 , 柳凯 , 郑昊 , 孙清林 . 基于PEMD-MPE算法的露天矿爆破振动信号降噪方法[J]. 黄金科学技术, 2024 , 32(1) : 82 -90 . DOI: 10.11872/j.issn.1005-2518.2024.01.088

Abstract

In order to remove the noise components mixed in the blasting vibration signals of open-pit mine,a noise reduction method based on the PEMD-MPE algorithm was proposed.This algorithm obtains a completely orthogonal Intrinsic Mode Function (IMF) components through Adaptive Orthogonal Empirical Mode Decomposition (PEMD).Subsequently,it performs a randomness test on the IMF components and calculates its Mean Power Entropy (MPE).Finally,based on a preset entropy threshold of 0.6,it determines whether a component is noise.If the obtained MPE is greater than 0.6,the component is identified as a noise component and needs to be removed,thus achieving the purpose of noise recluction.Applying this algorithm to denoise measured open-pit mining explosion vibration signals,the results indicate that compared to the EMD-MPE and EEMD-MPE algorithms,the proposed algorithm improves the signal-to-noise ratio by 3.520 dB and 1.107 dB,respectively.It exhibits the best denoising effect,with the smallest reconstruction standard deviation and root mean square error,providing better fidelity to the original signal.Using Adaptive Optimal Kernel (AOK) time-frequency analysis technology to analyze the signal waveforms before and after denoising,a comparison reveals consistent main frequencies.Throughout the denoising process,peak energy and energy in the main frequency band (0~300 Hz) do not show a significant decrease.This indicates that the PEMD-MPE algorithm,while preserving the authenticity of the real signal,more effectively removes noise components.

[an error occurred while processing this directive]

2023年我国黄金产量375.155 t,黄金消费量1 089.69 t

中国黄金协会最新统计数据显示:2023年,我国国内原料黄金产量为375.155 t,同比增长0.84%,其中,黄金矿产金完成297.258 t,有色副产金完成77.897 t。另外,2023年进口原料产金144.134 t,同比增长14.59%,总计全国共生产黄金519.289 t,同比增长4.31%。

我国黄金矿产金主要产于大型黄金企业(集团)。据统计,2023年我国大型黄金企业(集团)境内矿山矿产金产量为142.323 t,占全国矿产金的47.88%。其中,紫金矿业、山东黄金和赤峰黄金等企业境外矿山实现矿产金产量60.378 t,同比增长18.28%。

2023年,我国黄金行业进一步实施新一轮找矿突破战略行动,稳步推进黄金矿产资源安全保障体系建设,通过探矿增储切实端牢“资源”饭碗,以资源并购等途径加快增储上产。其中,山东省在新一轮找矿突破战略行动中取得探矿增储上的重大突破,山东莱州西岭金矿成为国内发现的最大单体金矿床,属世界级巨型单体金矿床。经初步认定,西岭金矿新增金金属量近200 t,累计金金属量达580 t。山东黄金、紫金矿业、山东招金等企业积极布局优质资源,通过并购、竞标等方式对甘肃西和大桥金矿、西藏朱诺铜矿和甘肃敦煌北山金矿等多项金、铜矿项目进行资源整合。中国黄金积极打造原创技术“策源地”,所掌握的生物氧化提金、原矿焙烧提金、“99999”高纯金精炼等多项关键核心技术已达到国际领先水平,其中生物冶金和尾矿资源化2项成果获第二十四届中国专利优秀奖。

2023年,全国黄金消费量1 089.69 t,与2022年同期相比增长8.78%。其中:黄金首饰706.48 t,同比增长7.97%;金条及金币299.60 t,同比增长15.70%;工业及其他用金83.61 t,同比下降5.50%。在一系列提振消费政策推动下,全国消费市场持续恢复回升,金银珠宝成为全年各商品零售类别中增长幅度最快的品类。黄金首饰加工零售企业不断在金饰产品设计上推陈出新,小克重、新款式的黄金首饰备受消费者青睐,促进黄金首饰消费的提升。实物黄金投资的较高关注度使溢价相对较低的金条及金币消费实现较快增长。

脚注

中国黄金协会)

http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-1-82.shtml

Ali M Khan A Rehman N2017.Hybrid multiscale wind speed forecasting based on variational mode decomposition[J].International Transactions on Electrical Energy Systems28(1):2447-2466.

Cao Ying Duan Yubo Liu Jicheng,et al,2016.Multiscale morpholgical filter modal aliasing suppression method[J].Electric Machies and Control20(9):110-116.

Chen G A Li Q Li D,et al,2019.Main frequency band of blast vibration signal based on wavelet packet transform[J].Applied Mathematical Modelling,74:569-585.

Chen Renxiang Tang Baoping Ma Jinghua2012.Adaptive noise reduction method for vibration signal based on EEMD[J].Journal of Vibration and Shock31(15):82-86.

Chen Weixing Sun Xixi2022.Research on sparse total variational denoising algorithm for OVMD-MPE group[J].Acta Metrology Sinica43(1):48-56.

Deng Hongwei Shen Yipeng2021.Noise reduction method of micoseismic signal based on variational mode decomposition and particle swarm arithmetic[J].Mining and Metallurgical Engineering41(1):7-10.

Fu Xiaoqiang Zhang Renwei Lei Zhen,et al,2020.Trend term and noise elimination method of blasting signal in coal mine vertical shaft[J].Journal of Lanzhou Institute of Technology27(1):57-62.

Jia Bei Ling Tianlong Hou Shijun,et al,2020.Application of variational mode decomposition in the removal of trend term of blasting signal[J].Explosion and Shock40(4):123-131.

Jiang X L Wang F F Yang H,et al,2018.Dynamic response of shallow-buried tunnels under asymmetrical pressure distributions[J].Journal of Testing and Evaluation46(4):1574-1590.

Li Xibing Zhang Yiping Zuo Yujun,et al,2006.EMD filtering and noise cancellation of rock blasting vibration signal[J].Journal of Central South University(Natural Science Edition),(1):150-154.

Liu Xiaoyan Jia Mingtao2015.Identification and positioning of urban underground pipelines based on improved EMD-wavelet threshold combined denoising[J].China Safety Science and Technology11(6):56-62.

Ooms K Gildea T Azzato E,et al,2022.Molecular testing in malignant pleural effsion (MPE) samples from patients with non-small cell lung carcinoma (NSCLC)[J].Journal of the American Society of Cytpathology11(6):S21-S22.

Peng Y Liu Y Zhang C,et al,2021.A novel denoising model of underwater drilling and blasting vibration signal based on CEEMDAN[J].Arabian Journal for Science and Engineering46(5):4857-4865.

Peng Yaxiong Liu Guangjin Su Ying,et al,2022.Research on noise reduction method of mine blasting seismic wave signal based on adaptive VMD-MPE algorithm[J].Journal of Vibration and Shock41(13):135-141.

Wang F F Jiang X L Niu J Y2017.The large-scale shaking table model test of the shallow-bias tunnel with a small cleardistance[J].Geotechnical and Geological Engineering35(3):1093-1110.

Wu Z Huang N E2009.Ensemble empirical mode decomposition:A noise-assisted data analysis method[J].Advances in Adaptive Data Analysis1(1):1-41.

Xie Quanmin2011.Application of second-generation wavelet packet transform in denoising analysis of blasting vibration signal[J].Enineering Blasting17(3):21-24.

Xu Hongbin Li Shulin Chen Jijing2012.Research on denoising method of microseismic monitoring signal of largescale rock mass structure based on wavelet transform[J].Acta Seismosinica34(1):85-96.

Yi Wenhua Liu Liansheng Yan Lei,et al,2020.Denoising of blasting vibration signal based on improved EMD algorithm[J].Explosion and Shock40(9):77-87.

Zhang Jiancai Gao Junwei2019.Fault diagnosis of rolling bearings based on variational mode decomposition and multi-scale arrangement entropy[J].Noise and Vibration Control39(6):181-186.

Zhang Yuanjuan Kong Dezeng2019.Study on the influence of different lithology on blasting vibration effect[J].Mining and Metallurgical Engineering39(5):6-8.

Zhao Mingsheng Liang Kaishui Luo Yuanfang,et al,2011.Application of EEMD in denoising of blasting vibration signal[J].Blasting Journal28(2):17-20,59.

Zheng Jinde Cheng Junsheng Yang Yu2013.Research on improved EEMD algorithm and its application [J].Journal of Vibration and Shock32(21):21-26,46.

曹莹,段玉波,刘继承,等,2016.多尺度形态滤波模态混叠抑制方法[J].电机与控制学报20(9):110-116.

陈仁祥,汤宝平,马婧华,2012.基于EEMD的振动信号自适应降噪方法[J].振动与冲击31(15):82-86.

陈维兴,孙习习,2022.OVMD-MPE群稀疏全变分去噪算法研究[J].计量学报43(1):48-56.

邓红卫,申一鹏,2021.基于变分模态分解和粒子群算法的微震信号降噪方法[J].矿冶工程41(1):7-10.

付晓强,张仁巍,雷振,等,2020.煤矿立井爆破信号趋势项和噪声消除方法[J].兰州工业学院学报27(1):57-62.

贾贝,凌天龙,侯仕军,等,2020.变分模态分解在爆破信号趋势项去除中的应用[J].爆炸与冲击40(4):123-131.

李夕兵,张义平,左宇军,等,2006.岩石爆破振动信号的EMD滤波与消噪[J].中南大学学报(自然科学版),(1):150-154.

刘晓艳,贾明涛,2015.基于改进EMD—小波阈值联合去噪的城市地下管线识别与定位[J].中国安全生产科学技术11(6):56-62.

彭亚雄,刘广进,苏莹,等,2022.基于自适应VMD-MPE算法的矿山爆破地震波信号降噪方法研究[J].振动与冲击41(13):135-141.

谢全民,2011.二代小波包变换在爆破振动信号去噪分析中的应用[J].工程爆破17(3):21-24.

徐宏斌,李庶林,陈际经,2012.基于小波变换的大尺度岩体结构微震监测信号去噪方法研究[J].地震学报34(1):85-96.

易文华,刘连生,闫雷,等,2020.基于EMD改进算法的爆破振动信号去噪[J].爆炸与冲击40(9):77-87.

张建财,高军伟,2019.基于变分模态分解和多尺度排列熵的滚动轴承故障诊断[J].噪声与振动控制39(6):181-186.

张袁娟,孔德增,2019.不同岩性对爆破振动效应影响研究[J].矿冶工程39(5):6-8.

赵明生,梁开水,罗元方,等,2011.EEMD在爆破振动信号去噪中的应用[J].爆破28(2):17-20,59.

郑近德,程军圣,杨宇,2013.改进的EEMD算法及其应用研究[J].振动与冲击32(21):21-26,46.

文章导航

/

[an error occurred while processing this directive]