[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
采选技术与矿山管理

根土复合体增强矿区排土场边坡抗剪强度试验研究

  • 刘伟 ,
  • 闫晓宇 ,
  • 刘庆朋 ,
  • 孙欣然
展开
  • 内蒙古大学交通学院,内蒙古 呼和浩特 010070
闫晓宇(1998-),男,内蒙古巴彦淖尔人,硕士研究生,从事岩土工程方面的研究工作。

刘伟(1989-),男,内蒙古达拉特旗人,副教授,博士,从事岩土工程方面的研究工作。

收稿日期: 2024-05-04

  修回日期: 2024-06-22

  网络出版日期: 2024-09-19

基金资助

“科技兴蒙”行动重点专项项目“窟野河流域山水林田湖草沙矿城系统治理技术与示范”课题4“绿色矿山生态修复与综合治理技术研究”专题4“典型矿区边坡稳固与生态修复协同控制技术研究”(2022EEDSKJXM005-04-04)

Experimental Study on Shear Strength of Dump Slope in Mining Area Enhan-ced by Root-Soil Composite

  • Wei LIU ,
  • Xiaoyu YAN ,
  • Qingpeng LIU ,
  • Xinran SUN
Expand
  • School of Transportation,Inner Mongolia University,Hohhot 010070,Inner Mongolia,China

Received date: 2024-05-04

  Revised date: 2024-06-22

  Online published: 2024-09-19

摘要

为研究矿区排土场边坡沙柳根—土复合体的固土护坡机理,对根系如何增强土体的抗剪强度进行了量化分析。以内蒙古鄂尔多斯市伊金霍洛旗纳林陶亥镇矿区排土场作为研究区,设置了试样主根含量为0根、5根、10根和15根共4个梯度,对沙柳根—土复合体进行50 kPa、100 kPa和150 kPa垂直应力下的大型直剪试验。结果表明:(1)随着主根含量的逐渐增加,根—土复合体的抗剪强度也相应提高,剪切破坏时,含根试样的黏聚力相较素土增大了3.28~5.43倍;(2)对主根含量、垂直应力、黏聚力和内摩擦角进行Pearson相关分析,并构建回归方程,结果显示根—土复合体的黏聚力与主根含量呈显著正相关关系(P<0.05,r=0.953),主根含量和垂直应力与内摩擦角均不存在显著相关关系(P>0.05);(3)由于根系与土颗粒之间的摩擦力与根系周围大量土颗粒团聚体的积聚,共同形成一种锚固加筋结构,使得黏聚力显著增大。研究结果为矿区排土场边坡通过种植植物来进行生态修复,以及有效地预防浅层滑坡和水土流失等灾害提供了理论基础。

本文引用格式

刘伟 , 闫晓宇 , 刘庆朋 , 孙欣然 . 根土复合体增强矿区排土场边坡抗剪强度试验研究[J]. 黄金科学技术, 2024 , 32(5) : 871 -881 . DOI: 10.11872/j.issn.1005-518.2024.05.121

Abstract

With the rapid expansion of China’s economy,the demand for coal mining resources has significantly increased,predominantly utilizing low-cost open-pit mining methods.This approach results in the formation of numerous slopes within the discharge field.Under conditions of sustained rainfall,these slopes are highly susceptible to various geohazards,including landslides and soil erosion.Therefore,it is imperative to implement effective protective measures to ensure the safety of coal mine operations and the surrounding regions.To investigate the soil consolidation and slope protection mechanisms of salal root-soil complexes on the slopes of mine discharge sites,a quantitative analysis was conducted to assess how the root system enhances soil shear strength.This study focuses on the mine discharge site in Nalin Taohai Town,Yijinholo Banner,Erdos City,Inner Mongolia.Four gradients of main root content (0,5%,10%,and 15%) were established,and large-scale direct shear tests were performed on salix root-soil composites under vertical stresses of 50 kPa,100 kPa,and 150 kPa.(1) As the content of primary roots gradually increased,the shear strength of the root-soil composite correspondingly improved,with the cohesive force of root-containing specimens exhibiting an increase of 3.28 to 5.43 times compared to that of plain soil during shear failure.(2) When the shear failure of the salix root-soil composite adhered to the Moore-Cullen strength failure criterion,the cohesive force of the root-containing specimens increased by 3.28 to 5.43 times relative to that of vegetative soil.(3)Pearson’s correlation analysis and regression equation were constructed.The results indicate a significant positive cor-relation between the cohesive force of the root-soil composite and the primary root content (P<0.05,r=0.953).However,neither the primary root content nor the vertical stress exhibited a significant correlation with the angle of internal friction (P>0.05).The friction between the root system and soil particles,coupled with the accumulation of numerous soil particle agglomerates around the root system,collectively forms an anchoring and reinforcing structure that significantly enhances cohesive force.The findings of this study offer a robust theoretical foundation for the ecological restoration of slopes at discharge sites in mining areas through plant cultivation,as well as for the effective prevention of disasters such as shallow landslides and soil erosion.

[an error occurred while processing this directive]

世界最大未开发金矿之一将投产

据9月3日消息,非洲最大产金国——加纳矿业行业监管机构负责人透露,该国10年来最大绿地金矿将在11月份投产,预计年产量将超过35万盎司。

这座名为Namdini的矿山所有权人为卡帝诺资源有限公司(Cardinal Resources Limited)。该矿山于2020年获得许可证。

卡帝诺资源有限公司是一家成立于2010年、总部位于澳大利亚珀斯的黄金勘探开发公司。公司的核心资产是位于加纳的3个黄金项目,分别是位于加纳东北部的Namdini开发项目和Bolgatanga勘探项目,以及加纳西南部的Subranum勘探项目。Namdini项目是公司专注开发的旗舰项目。

值得关注的是,2020年,山东黄金公司的境外全资子公司山东黄金矿业(香港)有限公司(简称“山东黄金香港”)经过和包括俄罗斯黄金巨头诺德黄金(Nordgold)在内的多家公司竞争,最终和卡帝诺资源有限公司签署《要约实施协议》,以场外要约收购方式向持有卡帝诺全部已发行股份的股东发出场外附条件要约收购,从而获得了其位于加纳的Namdini金矿项目的开采权。这也是山东黄金在西非加纳拥有的首个黄金矿业项目。

根据山东黄金当时发布的公告,Namdini项目采矿租约面积为63 km2,矿权期限为15年。经过对采坑设计、矿坑壁角度和开采程序的优化,该金矿项目拥有证实加可信储量约为157.2 t,平均金品位为1.13×10-6;拥有探明加控制资源量约为203.1 t,平均金品位为1.12×10-6,是世界最大的未开发金矿之一。

Namdini金矿作为加纳乃至西非地区重要的矿业项目,对加纳的经济发展和全球黄金市场有着重要的影响。该项目于2014年开始钻探,2015年取得重大发现,2016年进行大规模钻探并报告资源量。根据卡帝诺2019年10月公布的Namdini项目的可研报告,项目建设期为27个月,拟2019年第4季度开始建设,2022年中正式投产,投产后平均年产黄金8.9 t。

加纳是非洲大陆矿产资源、尤其是金矿资源最为丰富的国家之一,素有“黄金海岸”的美称。2024年前7个月,加纳黄金产量达到了250万盎司。此次投产的Namdini金矿项目位于加纳东北部Upper East(上东部)省Talensi(塔伦西)区Bolgatanga(博尔加坦加)镇东南方向约30 km处。据悉,该金矿项目的投产将促进当地经济的增长,并新增数百个就业岗位。

脚注

矿业界)

http://www.goldsci.ac.cn/article/2024/1005-2518/1005-2518-2024-32-5-871.shtml

Chang Zhenglin2023.Development trend and prospect of open-pit mining technology of China[J].Modern Mining39(7):1-4.

Desert Prevention and Control,2018. Techonlogy regulations of setting sand-barrier on shifting sandy land:LY/T 2986-2018 [S].Hohhot:Inner Mongolia Academy of Forestry Sciences.

Liao Yongbo Li Shujian Huang Jie,et al,2023.Discussion on slope stability and internal drainage process in open pit mines[J].Science and Technology Vision,( 8):57-60.

Liu X Y Bai Z K Zhou W,et al,2017. Changes in soil properties in the soil profile after mining and reclamation in an opencast coal mine on the Loess Plateau,China[J].Ecological Engineering,98:228-239.

Lu Guihong Guoqiang Ou Yang Shun,et al,2014.Root tensile test of typical grass in debris flow triggering area[J].Mountain Research32(6):725-731.

People’Republic of China Ministry of Transportation Highway Research Institute,2006. Test method of geosynthetics for highway engineering:JTG E50-2006 [S].Beijing:People’s Transportation Press.

Rai R Shrivastva B K2011.Biological stabilization of mine dumps:Shear strength and numerical simulation approach with special reference to Sisam tree[J].Environmental Earth Sciences63(1):177-188.

Ranjan V Sen P Kumar D,et al,2015.A review on dump slope stabilization by revegetation with reference to indigenous plant[J].Ecological Processes4(1):14.

Ranjan V Sen P Kumar D,et al,2017.Enhancement of mechanical stability of waste dump slope through establishing vegetation in a surface iron ore mine[J].Journal of Mining Science53(2):377-388.

Shanghai Xian Dai Architectural Design(Group)Co.,Ltd.,2010. Foundation design code:DGJ08-11-2010 [S].Shanghai:Shanghai Xian Dai Architectural Design(Group)Co.,Ltd.

The State Bureau of Quality and Technical Supervision,1998. Geotextiles and geotextile-related products—Determination of friction characteristics—Part 1:Direct shear test:GB/T 17635.1-1998 [S].Beijing:Standards Press of China.

Vogel W G1981. A guide for revegetating coal minespoils in the eastern United States,USA[J].Environmental Science,Geology,6(12):526-526.

Wang Jun2013.Study on the Stability of the Waste Dump of an Open Pit Coal Mine[D].Chengdu:Chengdu University of Technology.

Wu X Hu Z Q Fu Y H2014.Zoning of land reclamation in coal mining area and new progresses for the past 10 years[J].International Journal of Coal Science and Technology1(2):177-183.

Xing Zhenxiong Xie Zhenhua2016.Research on early warning method of open-pit dump landslide accidents based on case-based reasoning[J].Industrial Safety and Environmental Protection42(7):45-48.

Yan Cong Hu Xiasong Li Xilai,et al,2022.Experimental study on effects of vegetaion restoration on physical and mechanical properties of dump slope soil in alpine coal mine areas[J].Journal of Engineering Geology30(2):383-393.

Yang Yachuan Mo Yongjing Wang Zhifang,et al,1996.Experimental study on anti-water erosion and shear strength of soil-root composite[J].Journal of China Agricultural University,( 2):31-38.

Yang Yueshu Xia Zhenyao Xiao Hai,et al,2014.Experimental research on shear strength of indigofera amblyantha root-soil composite[J].Journal of Changjiang River Scientific Research Institute31(4):72-76.

Zhang L Wang J M Bai Z K,et al,2015.Effects of vegetation on runoff and soil erosion on reclaimed land in an opencast coal-mine dump in a loess area[J].Catena,128:44-53.

Zhou Yunyan Chen Jianping Wang Xiaomei2012.Progress of study on soil reinforcement mechanisms by root and its expectation[J].Ecology and Environmental Sciences21(6):1171-1177.

昌正林,2023.我国露天采矿技术发展趋势及展望[J].现代矿业39(7):1-4.

国家质量技术监督局,1998. 土工布及其有关产品摩擦特性的测定第1部分(直接剪切试验):GB/T 17635.1-1998 [S].北京:中国标准出版社.

廖永波,李树建,黄杰,等,2023.露天矿内排土场边坡稳定性与内排工艺探讨[J].科技视界,( 8):57-60.

陆桂红,欧国强,杨顺,等,2014.泥石流源区典型草本植物根系抗拉试验[J].山地学报32(6):725-731.

全国防沙治沙标准化技术委员会,2018. 流动沙地沙障设置技术规程:LY/T 2986-2018 [S].呼和浩特:内蒙古自治区林业科学研究院.

上海现代建筑设计(集团)有限公司,2010. 地基基础设计规范:DGJ08-11-2010 [S].上海:上海现代建筑设计(集团)有限公司.

王君,2013.某露天煤矿排土场边坡稳定性研究[D].成都:成都理工大学.

幸贞雄,谢振华,2016.基于案例推理的露天矿山排土场滑坡事故预警方法研究[J].工业安全与环保42(7):45-48.

闫聪,胡夏嵩,李希来,等,2022.高寒矿区排土场植被恢复对边坡土体物理力学性质影响研究[J].工程地质学报30(2):383-393.

杨亚川,莫永京,王芝芳,等,1996.土壤—草本植被根系复合体抗水蚀强度与抗剪强度的试验研究[J].中国农业大学学报,(2):31-38.

杨悦舒,夏振尧,肖海,等,2014.多花木蓝根—土复合体抗剪强度试验研究[J].长江科学院院报31(4):72-76.

中华人民共和国交通部公路科学研究院,2006. 公路工程土工合成材料试验规程:JTG E50-2006 [S].北京:人民交通出版社.

周云艳,陈建平,王晓梅,2012.植物根系固土护坡机理的研究进展及展望[J].生态环境学报21(6):1171-1177.

文章导航

/

[an error occurred while processing this directive]