img

Wechat

Adv. Search

Gold Science and Technology ›› 2016, Vol. 24 ›› Issue (4): 112-118.doi: 10.11872/j.issn.1005-2518.2016.04.112

Previous Articles     Next Articles

Design and Development of Simulation System for Flotation Process of a Gold Ore Based on ExtendSim

SONG Huichang,HU Xiaokun,LIU Qing   

  1. State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing,Beijing   100083,China
  • Received:2016-06-30 Revised:2016-07-24 Online:2016-08-28 Published:2016-11-17
  • Supported by:

    “十二五”国家科技支撑计划项目“大型金矿绿色采选冶技术研究及示范”(编号:2012BAB08B00)资助

Abstract:

Flotation process is an indispensable step of gold mineral processing.Several difficulties are existed when analyzing the gold flotation process,such as the complexity of multiple parameters which have a comprehensive influence on the flotation and the lack of mechanism models related to flotation.To solve the above problems,on the background of a domestic gold ore dressing plant,a simulation system for gold flotation process was established to simulate the process of gold flotation.Before the establishment of the system,several flotation related mathematical models were established and these models includes the optimization model of production planning,the distribution model of ore quantity,the prediction model of flotation reagents dosage and the prediction models of technical indexes.Then,the simulation system was designed and the system was developed.In this part,a commercial simulation software named ExtendSim was selected as the development platform to develop the simulation system,and the development process of the system was given in this paper. Finally,simulation experiments were conducted using the simulation system and the results was compared with the actual production data.The result of the comparison demonstrates that the simulation system built here can effectively estimate the variation of technical indexes under the conditions of different operating parameters and control parameters.

Key words: flotation process, simulation, flotation models, gold ore, ExtendSim

CLC Number: 

  • TD923

[1] 邱冠周,伍喜庆,王毓华,等.近年浮选进展[J].金属矿山,2006(1):41-52.
[2] 赵汝全,鄢发明,赵捷明,等.硫酸铜在微细粒嵌布水淬铜渣浮选试验中的应用[J].黄金科学技术,2015,23(4):46-51.
[3] 武钢.优化山东新城金矿浮选金精矿氰化浸出的试验与机理研究[D].昆明:昆明理工大学,2002.
[4] Bradshaw D J,Oostendorp B,Harris P J.Development of methodologies to improve the assessment of reagent behaviour in flotation with particular reference to collectors and depressants[J].Minerals Engineering,2005,18(2):239-246.
[5] 曹成超.新疆某矿山浮选试验研究[J].黄金科学技术,2014,22(3):70-76.
[6] 余胜利.围岩强蚀变黄铁矿型金矿的浮选研究[D].长沙:中南大学,2013.
[7] 张忠宝.福建某金银矿山氰化厂设计中的问题探讨[J].黄金科学技术,2008,16(5):49-50.
[8] 闫军宁.某高砷高硫微细粒多金属难处理金矿浮选试验研究[J].矿产综合利用,2006(3):10-12.
[9] 王光辉,匡亚莉,王章国,等.基于PID参数模糊自整定的浮选床液位控制研究[J].矿山机械,2012,40(9):80-83.
[10]赵新华,王光辉,匡亚莉,等.基于SVMR的煤泥浮选智能优化控制系统研究[J].矿山机械,2012,40(8):78-81.
[11]张勇,王介生,王伟.专家控制方法在浮选过程中的应用[J].控制与决策,2004,19(11):1271-1274.
[12]刘青,王彬,袁玮,等.金矿浮选回收率预测模型[J].北京科技大学学报,2014,36(11):113-120.
[13]刘青,袁玮,王宝,等.基于GA-BP神经网络的金精矿品位的预测[J].东北大学学报(自然科学版),2015,36(2):237-240.
[14] Dong S,Wang B,Wang Z.Comparison of Prediction Models for Power Draw in Grinding and Flotation Processes in a Gold Treatment Plant[J].Journal of Chemical Engineering of Japan,2016,49(1/3):204-210.
[15] Bhunia K,Kundu G,Mukherjee D.Prediction of gas holdup in a flotation column by Artificial Neural Network [J].International Journal of Coal Preparation and Utilization,2015,35(4):165-175.
[16] Nakhaei F,Mosavi M R,Sam A,et al.Recovery and grade accurate prediction of pilot plant flotation column concentrate:Neural Network and statistical techniques [J].International Journal of Mineral Processing,2012,110(8):140-154.
[17] Massinaei M,Doostmohammadi R.Modeling of bubble surface area flux in an industrial rougher column using artificial neural network and statistical techniques[J].Mineral Engineering,2010,23(2):83-90.
[18] Massinaei M,Sedaghati M R,Rezvani R,et al.Using data mining to assess and model the metallurgical efficiency of a copper concentrator[J].Chemical Engineering Communication,2014,201(10):1314-1326.
[19] Yang T,Liu Q,Peng L Z,et al.Optimization of rotor geometry for a type of self-suction aerating mechanical flotation cell[J].Journal of Chemical Engineering of Japan,2016,49(4):332-340.
[20] 李剑锋,刘青,杨腾,等.浮选机浮选过程的流场分析[J].有色金属(选矿部分),2014(3):67-71.
[21] Ge C Y,Wang J J,Gu X P,et al.CFD simulation and PIV measurement of the flow field generated by modified pitched blade turbine impellers[J].Chemical Engineering Research and Design,2014,92(6):1027-1036.
[22] 丁进良,陈小品,柴天佑,等.面向全流程优化的选矿过程仿真系统研发[J].控制工程,2012,19(3):365-369.
[23] 余刚,郑秉霖,柴天佑.面向过程建模的选矿生产计划调度仿真模型[J].系统仿真学报,2010,22(3):593-600.
[24] 董殊,王宝,彭良振,等.基于多目标规划的金矿选矿月生产计划优化模型[C]//中国矿业科技文汇——2015,2015:216-221.
[25] Cilek E C.Application of Neural Networks to predict locked cycle flotation test results[J].Minerals Engineering,2002,15(2):1095-1104.
[26] 杨菲菲.基于ExtendSim的单晶硅生产线仿真与优化研究[J].南宁:广西大学,2014.
[27] 刘宏志,刘钊,魏小兵.基于ExtendSim的城市应急物流储备的研究[J].计算机安全,2013(7):52-57.
[28] 陈志诚,齐欢,杨建军.基于ExtemdSim的系统可靠性建模[J].森林工程,2010,26(1):76-79.
[29] 乔文山,黄银娣.基于ExtendSim的货物配装策略研究[J].森林工程,2010,26(1):76-79.
[30] 杨岱浩,王波,叶春明.基于ExtewdSim的汽车维修流程仿真优化[J].现代制造工程,2016(2):8-11.

[1] Xiangrui HE, Xianyang QIU, Xiuzhi SHI, Xiaoyuan LI, Wei ZHI, Jun LIU, Yuanlai WANG. Study on the Movement Law of Overlying Strata in Underground Mining with Nonlinear Elastic Foundation Beam [J]. Gold Science and Technology, 2024, 32(4): 640-653.
[2] Qiao CHEN, Longxue JI, Xin DONG, Rong NI, Yansong LI, Linlin TONG, Hongying YANG. Study on the Influence of Concentration Mechanism of Knelson Concentrator on the Separation Effect of Gold Ore [J]. Gold Science and Technology, 2024, 32(4): 685-693.
[3] Yunlin YU, Kepeng HOU, Bajiu YANG, Yong CHENG, Taihong LU, Nannan ZHANG. Study on Pillar Mining Scheme of Gaofengshan Ore Section in Yunxi [J]. Gold Science and Technology, 2024, 32(3): 445-457.
[4] Bo LI, Chen WEN, Xiuzhi SHI. Optimization of Stope Sidewall Controlled Blasting Parameters for High-Stress Fan-Shaped Medium-Depth Hole [J]. Gold Science and Technology, 2024, 32(3): 511-522.
[5] Kuan LIU, Guanwang MO, Xiang LI, Pinghuan SHEN, Bo WAN, Jiankun LIU. Optimization of the Construction Parameters of Super-large Section Flat Structure Tunnel [J]. Gold Science and Technology, 2024, 32(2): 330-344.
[6] Kaibin WANG, Qin LIU, Hongtao WANG. Study on the Load Transfer Characteristics and Influence Factors of Anchora-ge Segment of Pressure-type Anchor Cable [J]. Gold Science and Technology, 2024, 32(1): 123-131.
[7] Zefeng XU, Xiuzhi SHI, Rendong HUANG, Wenzhi DING, Xin CHEN. Study on Filling Pipeline Optimization Based on Full Pipe Transportation [J]. Gold Science and Technology, 2024, 32(1): 160-169.
[8] Jielin LI, Yiliang LIU, Yupu WANG, Zaili LI, Keping ZHOU, Chunlong CHENG. Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway [J]. Gold Science and Technology, 2024, 32(1): 63-74.
[9] Honglu FEI, Hainan JI, Jie SHAN. Optimization and Comparative Experimental Study of Charge Structure of Water Medium Interval on Open-air Step [J]. Gold Science and Technology, 2023, 31(6): 930-943.
[10] Wenfa SHAN, Xiancheng MAO, Zhankun LIU, Hao DENG, Jin CHEN, Wei ZHANG, Haizheng WANG, Xin YANG. Numerical Simulation of Metallogenic Processes of Dayingezhuang Gold Deposit in Jiaodong Peninsula and Its Prospecting Significance [J]. Gold Science and Technology, 2023, 31(5): 707-720.
[11] Yu ZHANG, Wenji WANG, Jiaqi SUN, Yonggang XIAO. Fracture Performances of Bedding Structure Slate Under Dynamic Loading [J]. Gold Science and Technology, 2023, 31(5): 803-810.
[12] Yiling LIU, Yixia ZHONG. Simulation Study on Development of the Whole Industrial Chain of Rare Earth Enterprises from the Perspective of Material Flow [J]. Gold Science and Technology, 2023, 31(5): 835-844.
[13] Weihua WANG, Ruixin HUANG, Jie LUO. Particle Flow Simulation Study on the Propagation Law of Stress Wave at Nonlinear Deformation Joints [J]. Gold Science and Technology, 2023, 31(4): 580-591.
[14] Yanan ZHAO, Yihang ZHAO, Zhongming JIANG, Hongmin ZHAO. Preliminary Study on Static and Dynamic Stability of Canister for High-level Radioactive Nuclear Waste Disposal Based on Discrete Element Method [J]. Gold Science and Technology, 2023, 31(4): 592-604.
[15] Zhixiang LIU,Kai WANG,Xiaocong YANG,Chuanchuan WAN,Yucheng ZHOU. Reliability Analysis of Intelligent Shoveling System Based on Fuzzy Fault Tree and Monte Carlo Method [J]. Gold Science and Technology, 2023, 31(3): 477-486.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!