img

Wechat

Adv. Search

Gold Science and Technology ›› 2016, Vol. 24 ›› Issue (5): 86-93.doi: 10.11872/j.issn.1005-2518.2016.05.086

Previous Articles     Next Articles

Study on the Deposition Mechanism of Two-phase Flow Pipeline in Deep Filling System

GUO Jiang,LIU Ming,ZHANG Bixiao   

  1. School of Resources and Safety Engineering,Central South University,Changsha    410083,Hunan,China
  • Received:2016-06-27 Revised:2016-09-01 Online:2016-10-28 Published:2016-12-27

Abstract:

In order to solve the problems of safety production due to the deposition of pipeline in a deep mine,through the study on the deposition mechanism of deep level pipelines system,and based on solid-liquid two-phase flow theory,the deposition mechanism of two-phase flow pipeline is interpreted from the aspects of fine particulate fouling and coarse particle deposition.The FLUENT fluid dynamics software was used to model and analyze,the fine particles in slurry and the water mixed homogeneous suspension are seem as continuous phase,coarse particles are seem as discrete phase,and then according to the concentration distribution of the coarse particles in the slurry and the characteristics of the pipe velocity distribution,the characteristics of the particle deposition in the pipeline are determined.The results show that the scaling of the fine particles and the deposition of  the coarse particles are the main reasons of  two-phase filling flow pipe sediment.The numerical simulation of the two-phase flow filling process is consistent with the theoretical analysis.

Key words: deep well filling, deposition mechanism, solid-liquid two-phase flow, discrete phase model

CLC Number: 

  • TD853

[1] 王博,李长俊,杜强,等.天然气管道直管段结垢速率数值模拟研究[J].中国安全生产科学技术,2016,12(2):97-100.
[2] 张宇,吴海浩,宫敬.海底混输管道蜡沉积研究与发展[J].石油矿场机械,2009,38(9):1-8.
[3] 张钦礼,姜志良,王石,等.高浓度超细全尾砂充填料浆管道输送阻力模型[J].科技导报,2014,32(24):51-55.
[4] 王新民,丁德强,吴亚斌,等.膏体充填管道输送数值模拟与分析[J].中国矿业,2006,15(7):58-59.
[5] 黄玉诚,董羽,许保国,等.似膏体管道输送弯管段浆体流       动数值模拟研究[J].煤炭工程,2014,46(3):84-86.
[6] 杨波,杨仕教,王富林.基于ANSYS/FLOTRAN的高浓度全尾砂胶结充填管道输送数值模拟研究[J].黄金科学技术,2015,23(5):60-65.
[7] 何哲祥,田守祥,隋利军,等.矿山尾矿排放现状与处置的有效途径[J].采矿技术,2008,8(3):78-80,83.
[8] 傅旭东,王光谦,董曾南.低浓度固液两相流理论分析与管流数值计算[J].中国科学(E辑),2001,31(6):556-565.
[9] Turian R M,Hsu F L,Ma T W.Estimation of the critical velocity in pipeline flow of slurries[J].Powder Technology,1987,51(1):35-47.
[10]  马云庆,王瑞星,何顺斌,等.无底柱后退式竖向分条分段充填采矿法研究[J].黄金科学技术,2014,22(4):67-71.
[11] 过江,张碧肖.固—液两相流充填管道输送冲蚀磨损数值研究[J].科技导报,2015,33(11):49-53.
[12]  Usui H,Li L,Suzuki H.Rheology and pipelinetransportation of densefly-ash-water slurry[J].Korea-Australia Rheology Journal,2001,13(1):47-54.
[13] 邓义斌,王飞显,范世东.冰水两相流对海水管道冲蚀磨损特性数值模拟[J].航海工程,2015,44(1):150-154.
[14]  李亮,申龙涉,范开峰,等.弯管中多相流冲蚀腐蚀数值模拟[J].辽宁石油化工大学学报,2014,34(3):48-51.
[15]  张义,周文,孙志强.管道内气固两相流冲刷磨损特性数值模拟[J].金属材料与冶金工程,2011,39(1):11-15.
[16] 吴迪,蔡嗣经,杨威.基于CFD的充填管道固液两相流输送模拟及试验[J].中国有色金属学报,2012,22(7):2133-2140.
[17]  梁颖,袁宗明,陈学敏,等.基于 CFD 的液固两相流冲刷腐蚀预测研究[J].石油化工应用,2014,33(2):103-106.
[18]  杨建胜,罗坤,王则力.煤粉颗粒对管道壁面磨损的数值模拟研究[J].能源工程,2010(4):1-4.

[1] Yuhang SHENG, Dianfei PEI, Zhaojun QI, Xiaodong JING. Influence of Particle Size Composition of Tailings on Rheological Characteristics and Strength of Cemented Tailings Backfill [J]. Gold Science and Technology, 2024, 32(4): 631-639.
[2] Xiangrui HE, Xianyang QIU, Xiuzhi SHI, Xiaoyuan LI, Wei ZHI, Jun LIU, Yuanlai WANG. Study on the Movement Law of Overlying Strata in Underground Mining with Nonlinear Elastic Foundation Beam [J]. Gold Science and Technology, 2024, 32(4): 640-653.
[3] Songtao HU, Gengjie ZHU, Juntong ZHANG, Shiqun XU, Yunpeng KOU. Application Research on Cemented Fine Tailings Backfill of Gold Mines in the Jiaodong Area [J]. Gold Science and Technology, 2024, 32(3): 425-436.
[4] Yunlin YU, Kepeng HOU, Bajiu YANG, Yong CHENG, Taihong LU, Nannan ZHANG. Study on Pillar Mining Scheme of Gaofengshan Ore Section in Yunxi [J]. Gold Science and Technology, 2024, 32(3): 445-457.
[5] Hongjie QIU, Xianyang QIU, Shu ZHANG, Hui CHEN, Xiuzhi SHI, Wenbo SHEN, Tiejun TAO, Wuquan DUAN. Optimization of Bunch Holes Cutting Blasting in Deep Mine Under High Stress Environment [J]. Gold Science and Technology, 2024, 32(2): 318-329.
[6] Zefeng XU, Xiuzhi SHI, Rendong HUANG, Wenzhi DING, Xin CHEN. Study on Filling Pipeline Optimization Based on Full Pipe Transportation [J]. Gold Science and Technology, 2024, 32(1): 160-169.
[7] Long HAI, Rongtao BAO, Shilin TAN, Xianglong FANG. Experimental Study on the Mechanical Properties of Layered Tailing Sand Cemented Backfill and Optimization [J]. Gold Science and Technology, 2023, 31(5): 763-772.
[8] Weizhong ZHANG,Wei YUAN,Qinrong KANG,Yuandi XIA,Mengling LI. Quality Evaluation of Tunnel Surrounding Rock in Karst Area Based on Comprehensive Weight-Fuzzy Matter-element Method [J]. Gold Science and Technology, 2023, 31(3): 487-496.
[9] Zhixiang LIU,Mengyang YAN,Shuangxia ZHANG,Shuai XIONG,Kai WANG. Damage Constitutive Model Considering the Effect of Rock Microdefects [J]. Gold Science and Technology, 2023, 31(3): 507-515.
[10] Jielin LI,Jingyao WANG,Yigai XIAO,Xiaoshuang LI. Research on Meso-mechanical Properties of Rock Under Different Stress Paths Based on Discrete Element Method [J]. Gold Science and Technology, 2023, 31(1): 102-112.
[11] Baohui TAN,Yongding WANG,Zhigui ZHANG,Weiguo LONG,Bin LI,Jianyuan HE,Zhen GONG. Study on Safety and Efficient Mining Scheme for Low Grade Nickel Ore Under Complex Mining Conditions [J]. Gold Science and Technology, 2023, 31(1): 88-101.
[12] Qing YANG,Shijiao YANG,Ranyue ZHANG. Flocculation Sedimentation Test of Ultrafine Tailings Based on Turbidity of Supernatant Liquid [J]. Gold Science and Technology, 2022, 30(6): 948-957.
[13] Huayou SU,Yongding WANG,Baohui TAN,Weiguo LONG,Ning YANG,Zhigui ZHANG,Xingming CHEN. Study on Induced Caving Mechanism and Development Process of Large Area Cemented Backfill [J]. Gold Science and Technology, 2022, 30(5): 713-723.
[14] Xianfeng XU,Pengfei XING,Suihong WANG,Yong WANG. Rock Mass Quality Evaluation and Application Based on Game Theory and G1-EW-TOPSIS Method [J]. Gold Science and Technology, 2022, 30(5): 704-712.
[15] Kui ZHAO,Zhouchao LIU,Peng ZENG,Cong GONG. Experimental Study on Energy Damage Evolution Characteristics of Filling Specimens with Different Sizes Under Uniaxial Compression [J]. Gold Science and Technology, 2022, 30(4): 540-549.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!