img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (1): 1-8.doi: 10.11872/j.issn.1005-2518.2018.01.001

    Next Articles

Multi-channel Transient Electromagnetic Method:A New Geophysical Method and Its Application in Exploring Metallic Ore Deposits

ZHANG Wenwei 1,2,DI Qingyun 1,2,LEI Da 1,2,MA Fengshan 1,2   

  1. 1.Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing    100029,China;
    2.University of Chinese Academy of Sciences,Beijing    100049,China
  • Received:2017-07-04 Revised:2017-11-02 Online:2018-02-28 Published:2018-05-19
  • Supported by:

    国家重大科研装备研制项目“深部资源探测核心装备研发”(编号:ZDYZ2012-1)-05子项目“多通道大功率电法勘探仪”资助

Abstract:

As a new electromagnetic exploration method,multi-channel transient electromagnetic method(M-TEM) distinguishes itself from the electromagnetic family by its high resolution and large detection depth.The peak times of cross correlation function between transmitting current and received voltage give a new pseudo cross-section profile of apparent resistivity,which can reflect underground geoeletric structure very well.The field survey and data processing of M-TEM was discussed.In addition,a single-line M-TEM survey was conducted in Baertaolegai-Fuxingmen silver-lead-zinc polymetallic ore investigation zone.In data acquisition,it is deployed that a 240 m or 480 m inline dipole galvanic current source and 180 inline potential receivers with length of 60 m along 10.8 km survey line.The resulting pseudo cross section of M-TEM apparent resistivity is consistent with the borehole result.It is considered that M-TEM has a great application potential in future metal mineral exploration.

Key words: multi-channel transient electromagnetic (M-TEM) , Wiener filtering, cross correlation, earth impulse response, green function, metal mineral exploration, Da Hinggan Mountains, Baertaolegai-Fuxingtun

CLC Number: 

  • P618.4


[ 1 ] 张江旭. 自然电位法在层间氧化带型砂岩铀矿勘查中的应用[J].西部资源,2017(1):152,178.Zhang Jiangxu. Application of self-potential method into investigation of sandstone uranium deposit in interlayered oxidized zone[J].Western Resources,2017(1):152,178.
[ 2 ] 罗小南,蔡运胜. 物探直流电法寻找铝土矿层的应用效果[J].地质与勘探,2003,39(4):53-57.Luo Xiaonan,Cai Yunsheng. The application effectiveness of DC electric prospecting method in bauxite layer survey[J].Geology and Prospecting,2003,39(4):53–57.
[ 3 ] 李冰,丁云河,魏明君,等. 综合物探法开展深部隐伏岩(矿)体勘查的探索研究——以河南西部多金属成矿带为例[J].黄金科学技术,2012,20(6):21-26.Li Bing,Ding Yunhe,Wei Mingjun,et al. Explore deep concealed orebody by the application of synthetic methods of geophysical exploration:Take polymetallic metallogenic belt in west of Henan Province as an example[J].Gold Science and Technology,2012,20(6):21-26.
[ 4 ] 郑振云,刘召军,郑洁. CSAMT法在甘肃寨上金矿区南矿带找矿中的应用[J].黄金科学技术,2014,22(2):13-16.Zheng Zhenyun,Liu Zhaojun,Zheng Jie. Application of CSAMT method in prospecting of southern ore belt of Zhaishang gold fields,Gansu Province[J].Gold Science and Technology,2014,22(2):13-16.
[ 5 ] 黄镇豪,李兆谊,石玉春,等. 物探成果对罗维矿区深部找矿的指示作用及成矿潜力分析[J].黄金科学技术,2015,23(1):53-60.Huang Zhenhao,Li Zhaoyi,Shi Yuchun,et al. The instruction function and analysis of mineralization potential for deep prospecting in Luowei ore mine from results of geophysical prospecting[J].Gold Science and Technology,2015,23(1):53-60.
[ 6 ] 喻春,陈永凌,李建忠,等. 可控源音频大地电磁法在高楼山金矿深部找矿中的应用[J].黄金科学技术,2016,24(1):59-63.Yu Chun,Chen Yongling,Li Jianzhong,et al. Application of CSAMT to deep mine prospecting in the Gaoloushan gold mine[J].Gold Science and Technology,2016,24(1):59-63.
[ 7 ] Andrieux A P H,Neubauer F M,Vozoff H R K. A first attempt at monitoring underground gas storage by means of time-lapse multichannel transient electromagnetics[J].Geophysical Prospecting,2000,48(3):489-509.
[ 8 ] Wright D,Ziolkowski A,Hobbs B. Hydrocarbon detection and monitoring with a multicomponent transient electromagnetic (MTEM) survey[J].The Leading Edge,2002,21(9):852-864.
[ 9 ] Wright D A,Ziolkowski A,Hobbs B A. Detection of subsurface resistivity contrasts with application to location of fluids:US 2004/0232917 A1[P].2004-11-25.
[ 10 ] Ziolkowski A,Hobbs B A,Dawes G,et al. True amplitude transient electromagnetic system response measurement:WO/2006/114[P].2006-11-05.
[ 11 ] Ziolkowski A. Developments in the transient electromagnetic method[J].First Break,2007,25(6):99-106.
[ 12 ] Ziolkowski A,Hobbs B A,Wright D.Multitransient electromagnetic demonstration survey in France[J].Geophyics,2007,72(4):F197-F209.
[ 13 ] Ziolkowski A,Wright D,Hall G,et al. Successful transient EM survey in the North Sea at 100 m water depth[C]//SEG Technical Program Expanded Abstracts.Oklahoma:Society of Exploration Geophysicists,2008:667-671.
[ 14 ] Ziolkowski A,Wright D. Multi-transient electromagnetic repeatability experiment over the North Sea Harding field & Dagger[J].Geophysical Prospecting,2010,58(6):1159-1176.
[ 15 ] D’Arienzo A,Dell’Aversana P,Cantarella G,et al.Multi transient electromagnetic method in shallow water:A case history in the Mediterranean sea[C]//EGM 2010 International Workshop.Capri:EAGE-SEG Sezione Italiana,2010.
[ 16 ] Hobbs B,Ziolkowski A,Wright D.Multi-Transient Electromagnetics (MTEM)-controlled source equipment for subsurface resistivity investigation[C]//18th IAGA WG 1.2 Workshop on Electromagnetic Induction in the Earth.Paris:International Association of Geomagnetism and Aeronomy,2006.
[ 17 ] Ziolkowski A,Wright D,Mattsson J. Comparison of PRBS and Square-Wave Transient CSEM Data over Peon Gas Discovery,Norway[C]//SEG San Antonio 2011 Annual Meeting.Oklahoma:Society of Exploration Geophysicists,2011:583-588.
[ 18 ] Ziolkowski A,Wright D. Signal-to-Noise ratio of CSEM data in shallow water[C]//SEG Denver 2010 Annual Meeting.Oklahoma:Society of Exploration Geophysicists,2010:685–689.
[ 19 ] 底青云,雷达,王中兴,等. 多通道大功率电法勘探仪集成试验[J].地球物理学报,2016,59(12):4399-4407.Di Qingyun,Lei Da,Wang Zhongxing,et al. An integrated test of the multi-channel transient electromagnetic system[J].Chinese Journal of Geophysics,2016,9(12):4399-4407.
[ 20 ] Robinson E A,Treitel S. Principles of digital Wiener filtering[J].Geophysical Prospecting,1967,15(3):311-332.
[ 21 ] Ziolkowski A.Wiener estimation of the Green ’ s function[J].Geophysics,2013,78(5):W31-W44.
[ 22 ] 刘建明,张锐,张庆洲. 大兴安岭地区的区域成矿特征[J].地学前缘,2004,11(1):269-277.Liu Jianming,Zhang Rui,Zhang Qingzhou. The regional m etal logeny of Da hinggan ling,China[J].Earth Science Frontiers,2004,11(1):

[1] Yan LI, Jianguo WANG, Shengyun WEI, Guozhang LI, Jian HU, Zhinan WANG. Study on Geophysical and Geochemical Comprehensive Prospecting of Dexin Lead Polymetallic Deposit in Tibet [J]. Gold Science and Technology, 2024, 32(3): 400-415.
[2] Lei CHEN,Baofu DUAN,Dao LV,Jianpeng ZENG,Shuo ZHANG,Xingfu ZENG,Meijun HUANG. Geological Characteristics and Genesis of Yudai Copper Deposit in Kalatag District,Eastern Tianshan [J]. Gold Science and Technology, 2023, 31(3): 396-407.
[3] Yuanhong XIAN,Huasi ZHAN,Jiantang LI. Isotope Geochemical Characteristics and Geological Significance of Skarn Type Iron Polymetallic Deposit in Huaiji Area,Guangdong Province [J]. Gold Science and Technology, 2021, 29(6): 805-816.
[4] Haifeng WANG,Hongsheng GONG,Zhixing FENG,Runsheng HAN,Tianzhu DING,Xinyue ZHAO,Peng WU. Element Association Anomalies of Tectonite and Prediction of Concealed Orebodies in the 1 944 m Middle Section of Daliangzi Pb-Zn Deposit,Sichuan [J]. Gold Science and Technology, 2021, 29(6): 781-794.
[5] Jingjing ZHANG,Chengbiao LENG. Discussion on the Relationships Between Planation Surface and Preservation of Porphyry Copper Deposits in the Zhongdian Region,Yunnan Province,SW China:Constraints from Geomorphic Factor Analysis [J]. Gold Science and Technology, 2021, 29(3): 334-344.
[6] Xuelong LIU,Fucheng YANG,Changzhen ZHANG,Ying LUO,Shuaishuai WANG. Structural Characteristics and Mineralization of Xuejiping Porphyry Copper Deposit in Northwest Yunnan [J]. Gold Science and Technology, 2018, 26(4): 473-480.
[7] FAN Zhiyong,QIU Huiyuan,FU Xu,WANG Kexiang,Hugejiletu. Discovery and Exploration of Weilasituo Large Porphyry-type Tin-Polymetal Deposit in Inner Mongolia and Its Geological Significances [J]. Gold Science and Technology, 2017, 25(1): 9-17.
[8] MA Baojun,CHEN Chao,NIU Shuyin,GENG Guojian,ZHANG Fuxiang,ZHANG Jianzhen,SUN Aiqun. Analysis on Structure Deformation and Alteration of the Mujicun Cu-Mo Ore Field in Hebei Province [J]. Gold Science and Technology, 2016, 24(5): 19-25.
[9] SONG Junqiu,GU Jianjun,LANG Penglin. Analysis of the Geological Characteristics and Genesis of Changlingzi Lead-Zinc Deposit in Inner Mongolia [J]. Gold Science and Technology, 2016, 24(4): 54-59.
[10] ZHANG Zhuang,LI Wen,LIU Jianming,ZENG Qingdong. Progress of Exploration and Prospecting Thoughts for Silver Polymetallic Deposit at Southern-middle Parts of the Da Hinggan Mountains [J]. Gold Science and Technology, 2016, 24(4): 60-65.
[11] CHENG Laishun,LI Hongzhi,YIN Li,QIN Weijun,TIAN Haijun. Research on Geological Characteristics and Prospecting Direction of Erdaohezi Ag-Pb-Zn Deposit in Inner Mongolia [J]. Gold Science and Technology, 2016, 24(3): 58-63.
[12] XUE Lanhua,SHI Laohu,ZHANG Zhijun,SHEN Liusheng. Breccia Pipe and Its Constrain on Copper Mineralization in Kalagailei Copper Mine,Xinjiang Province [J]. Gold Science and Technology, 2016, 24(1): 23-27.
[13] XU Duoxun,LIU Junlai,YANG Shuanhai,WANG Dongsheng,GAO Xinlei,WANG Wenlong,LI Guoying. The Metamorphism and Deformation of the Neoproterozoic Zhaertai Group and Transformation Response to the Sulfides Ore-deposit of Huogeqi Copper-Zinc Polymetallic Deposit in Inner Mongolia [J]. Gold Science and Technology, 2015, 23(1): 24-33.
[14] PAN Meihui,JIA Zhilei,HOU Pengbo. Characteristics of C,O Isotopes in the Upper Carboniferous Keluke Formation in South Qilian Mountains [J]. Gold Science and Technology, 2014, 22(5): 39-44.
[15] ZHAO Chenglong,LI Zhengdong,CHEN Yuhua,BAO Shouli,QI Junxia,ZHANG Jun. Discussion on the Geological-Geochemical Characteristics and Prospecting of Copper-Polymetallic Deposit in Chayong Area,Qinghai Province [J]. Gold Science and Technology, 2013, 21(5): 34-39.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!