img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (1): 56-63.doi: 10.11872/j.issn.1005-2518.2018.01.056

Previous Articles     Next Articles

Study On Rate Effect of Uniaxial Compression Test for Red Sandstone

WANG Jin1,GONG Fengqiang 1,2   

  1. 1.School of Resources and Safety Engineering,Central South University,Changsha    410083,Hunan,China;2.Center for Advanced Study,Central South University,Changsha    410083,Hunan,China
  • Received:2017-01-05 Revised:2017-03-01 Online:2018-02-28 Published:2018-05-19

Abstract:

The uniaxial compression tests of homogeneous red sandstone under low loading (strain) rate range with different order of magnitude were carried out using hydraulic servo test machine.The effects of loading (strain) rate on the compressive strength,tangent elastic modulus and failure strain were investigated.The displacement  control  loading  was  adopted in the process of  testing,and  the  loading  rate were 0.12,1.2,12,120 mm/min respectively.The results show that there are good linear relationship among displacement control loading rate,actual loading rate and strain rate of specimen.The uniaxial compressive strength and tangent elastic modulus of rock materials increase with the loading rate under different loading rates,the uniaxial compressive strength increases by 11%,the tangent elastic modulus increases by 13%,and the rate effect is remarkable. It is also found that the failure strain is no associated with strain rate (loading rate) by experimental data,and there is no law of rate effect,so the strength criterion should be stress criterion instead of strain criterion.

 

Key words: red sandstone, uniaxial compression test, rate effect, loading rate, strain rate, compressive strength, tangent elastic modulus, stress criterion

CLC Number: 

  • TU458

[ 1 ] Zhao J,Li H B,Wu M B,et al. Dynamic uniaxial compression tests on granite[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(2):273-277.
[ 2 ] Li H B,Zhao J,Li T J. Triaxial compression tests of a granite at different strain rates and confining pressures[J].International Journal of Rock Mechanics and Mining Sciences,1999,36(8):1057-1063.
[ 3 ] 梁昌玉,李晓,李守定,等. 岩石静态和准动态加载应变率的界限值研究[J]. 岩石力学与工程学报,2012,31(6):1156-1161.Liang Changyu,Li Xiao,Li Shouding,et al. Study on the boundary value of static and quasi dynamic loading strain rate of rock[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(6):1156-1161.
[ 4 ] 黄达,黄润秋,张永兴. 粗晶大理岩单轴压缩力学特性的静态加载速率效应及能量机制试验研究[J]. 岩石力学与工程学报,2012,31(2):245-255.Huang Da,Huang Runqiu,Zhang Yongxing.Experimental investigations on static loading rate effects on mechanical properties and energy mechanism of coarse crystal grain marble under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(2):245-255.
[ 5 ] 梁卫国,徐素国,莫江,等. 盐岩力学特性应变率效应的试验研究[J].岩石力学与工程学报,2010,2(1):43-50.Liang Weiguo,Xu Suguo,Mo Jiang,et al. Test study of strain rate effects on mechanical performances of salt rock[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(1):43-50.
[ 6 ] 杨仕教,曾晟,王和龙. 加载速率对石灰岩力学效应的试验研究[J].岩土工程学报,2005,27(7):786-788.Yang Shijiao,Zeng Sheng,Wang Helong. Experimental analysis on mechanical effects of loading rates on limestone[J].Chinese Journal of Geotechnical Engineering,2005,27(7):786-788.
[ 7 ] 朱瑞赓,吴绵拔. 在不同加载速率条件下花岗岩的破坏准则[J].岩土力学,1984,5(1):37-46.Zhu Ruigeng,Wu Mianba. Failure criterion of granite at different loading rates[J].Rock and Soil Mechanics,1984,5(1):37-46.
[ 8 ] 李刚,陈正汉,谢云,等. 高应变率条件下三峡工程花岗岩动力特性的试验研究[J].岩土力学,2007,28(9):1833-1840.Li Gang,Chen Zhenghan,Xie Yun,et al. Test research on dynamic characteristics of three Gorges granite under high strain rate[J].Rock and Soil Mechanics,2007,28(9):1833-1840.
[ 9 ] 冯遗兴,邱一平,李彰明. 应变率对岩石强度和变形性质的影响[J].岩土工程学报,1986,8(6):50-56.Feng Yixing,Qiu Yiping,Li Zhangming. The effect of strain rate on strength and deformability of rock[J].Chinese Journal of Geotechnical Engineering,1986,8(6):50-56.
[ 10 ] Lu Y B,Li Q M. A correction methodology to determine the strain-rate effect on the compressive strength of brittle material based on SHPB testing[J].International Journal of Protective Structures,2011,2(1):127-138.
[ 11 ] Asprone D,Cadoni E,Prota A,et al. Dynamic behavior of a Mediterranean natural stone under tensile loading[J].International Journal of Rock Mechanics & Mining Sciences,2009,46(3):514-520.
[ 12 ] 张宗贤,俞洁,赵清. 岩石的加载率效应[J].有色金属,1996,48(1):1-4.Zhang Zongxian,Yu Jie,Zhao Qing. Effects of loading rates on rock materials[J].Nonferrous M etal s,1996,48(1):1-4.
[ 13 ] 戚承志,钱七虎. 岩石等脆性材料动力强度依赖应变率的物理机制[J].岩石力学与工程学报,2003,22(2):177-181.Qi Chengzhi,Qian Qihu. Physical mechanism of dependence of material strength on strain rate for rock-like material[J].Chinese Journal of Rock Mechanics and Enginee-ring,2003,22(2):177-181.
[ 14 ] 马怀发,陈厚群,黎保琨. 应变率效应对混凝土动弯拉强度的影响[J].水利学报,2005,36(1):69-76.Ma Huaifa,Chen Houqun,Li Baokun. Influence of strain rate effect on dynamic bending strength of concrete[J].Journal of Hydraulic Engineering,2005,36(1):69-76.
[ 15 ] 宫凤强,司雪峰,李夕兵,等. 基于应变率效应的岩石动态Mohr-Coulomb准则和Hoek-Brown准则研究[J].中国有色金属学报,2016,26(8):1763-1773.Gong Fengqiang,Si Xuefeng,Li Xibing,et al. Rock dynamic Mohr-Coulomb and Hoek-Brown criteria based on strain rate effect[J].The Chinese Journal of Nonferrous Metals,2016,26(8):1763-1773.
[ 16 ] Sang H C,Ogata Y,Kaneko K. Strain-rate dependency of the dynamic tensile strength of rock[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(5):763-777.
[ 17 ] Mahmuto?lu Y. The effects of strain rate and saturation on amicro-cracked marble[J].Engineering Geology,2006,82(3):137-144.

[1] Ying SHI, Ruiyang NIE, Shitong ZHOU, Sicheng LU, Zixuan QING. Effect of Sulfate-Containing Wastewater on the Properties of Phosphogypsum-Based Cemented Paste Backfill [J]. Gold Science and Technology, 2024, 32(3): 416-424.
[2] Xianfeng XU,Pengfei XING,Yong WANG,Suihong WANG. Experimental Study on Rock Mechanical Properties Based on L-Type Rebound Instrument [J]. Gold Science and Technology, 2022, 30(4): 550-558.
[3] Yefan LIU,Ying SHI. Study on Dynamic Mechanical Characteristics of Phosphogypsum Cemented Filling Body [J]. Gold Science and Technology, 2022, 30(4): 574-584.
[4] Long HAI,Bo XU,Xin ZHAO. Optimization of Aggregate Gradation of Paste Filling Material Prepared by Construction Waste [J]. Gold Science and Technology, 2021, 29(4): 573-581.
[5] Xin ZHAO,Long HAI,Bo XU,Tongjun CHENG. Experimental Study on Preparation of Paste Filling Materials from Power Plant Ash [J]. Gold Science and Technology, 2021, 29(4): 582-592.
[6] Qianqian WANG,Ying XU,Haibo WANG,Qiangqiang ZHENG,Xian NI,Hao HU. Experimental Study on Dynamic Mechanical Properties of Similar Sandstone Materials with Different Damage Degree [J]. Gold Science and Technology, 2020, 28(6): 868-876.
[7] Jingyu GUO,Chengzhi PU,Guicheng HE,Yilong LI,Shaofeng YANG,Jiajun ZENG. Fracture Test of Rock-like Materials with Cracks and Analysis of Acoustic Emission Characteristics at Static-Quasi-Static Loading Rates [J]. Gold Science and Technology, 2020, 28(6): 877-884.
[8] Biwei HU, Tubing YIN, Xibing LI. Experimental Study on Mechanical Impact Breaking Rock with Microwave Radiation [J]. Gold Science and Technology, 2020, 28(4): 521-530.
[9] Bing DAI, Qiwei SHAN, Xinyao LUO, Yongming XUE. Cyclic Impact Test of Hole-bearing Rock Under Static Stress [J]. Gold Science and Technology, 2020, 28(4): 531-540.
[10] Jian HU, Fengqiang GONG, Hangyu JIA. Research on Mechanical and Energy Dissipation Characteristics of Red Sandstone in SHPB Compression Test [J]. Gold Science and Technology, 2020, 28(3): 411-420.
[11] Chengcheng WANG, Xinyao LUO, Kexu CHEN, Bing DAI, Guicheng HE. Experimental Study on Crack Evolution and Fracture Characteristics of Rocks with Prefabricated Cracks [J]. Gold Science and Technology, 2020, 28(3): 421-429.
[12] Siyu MAO, Ping CAO, Jianxiong LI, Chuanjing OU. Fatigue Damage Analysis of Fractured Sandstone Based on Nuclear Magnetic Resonance T2 Spectrum [J]. Gold Science and Technology, 2020, 28(3): 430-441.
[13] Zhaodong HUANG,Deming ZHANG,Yikai LIU,Qinli ZHANG,Hao WANG. Effect of Citric Acid Immersing Pre-treated on the Performance of the Phosphogypsum Cemented Paste Backfill [J]. Gold Science and Technology, 2020, 28(1): 97-104.
[14] Zhu SU,Deming ZHANG,Qinli ZHANG. Study on Cementation Filling Test and Environmental Effect of Gold Mine Tailings [J]. Gold Science and Technology, 2019, 27(6): 912-919.
[15] Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG. Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm [J]. Gold Science and Technology, 2019, 27(4): 581-588.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!