img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (1): 64-73.doi: 10.11872/j.issn.1005-2518.2018.01.064

Previous Articles     Next Articles

Research on the Change Law of Volume Fraction of Tailings with Tailings Silo Height in Vertical Tailings Silo

REN Weicheng 1,2,QIAO Dengpan 3,ZHOU Zhiwei 4   

  1. 1.School of Mining Engineering,North China University of Science and Technology,Tangshan 063009,Hebei,China; 2. Key Laboratory of Mining and Safety Technology of Hebei Province,North China University of Science andTechnology,Tangshan 063009,Hebei,China; 3. Faculty of Land Resource Engineering,Kunming University of Science and Technology,Kunming 650093,Yunnan,China; 4.Anshan Chentaigou Iron Mining,China Minmetals Corporation,Anshan 114044,Liaoning,China
  • Received:2017-07-31 Revised:2017-10-31 Online:2018-02-28 Published:2018-05-19

Abstract:

There were many problems in the existing ore drawing system,such as large sand concentration fluctuation,low concentration of actual ore drawing and instability,so a new discharge sand model was proposed ,which was different from tranditional discharge sand working mode of vertical sand silo.That was,by controlling three conditions of feed flow and concentration,discharge flow and height of tailings stacking surface,to carry out feed,overflow and discharge sand at the same time. And fluent software was used to simulate continuous discharge tailings model. The results showed that,different height of the accumulation corresponding to discharge tailings concentration at the bottom of the silo is different can be obtained as feeding,overflow and discharging keeping stability and achieving a dynamic balance. The relationship of tailings volume fraction changes with regularly silo height.Prediction model of the volume fraction of tailings changes with silo height is proposed. Industrial test of continuous tailings discharge systems is carried out in Dahongshan copper mine Yuxi Yunnan.The results showed that the industrial test displays successfully which validate the efficacy of the continuous tailings discharge model.

Key words: tailings, dynamic sedimentation, vertical tailings silo, consecutive discharge tailings, numerical simulation, feeding, underflow, accumulation height

CLC Number: 

  • TD325

[ 1 ] 王方汉,陈德标. 立式砂仓絮凝浓缩泥浆技术研究与应用[J].金属矿山,2000(1):21-24.Wang Fanghan,Chen Debiao. Study and application of the technology of slime pulp flocculation and thickening in a vertical sand bin[J].M etal Mine,2000(1):21-24.
[ 2 ] 史秀志,胡海燕,杜向红,等. 立式砂仓尾砂浆液絮凝沉降试验研究[J].矿冶工程,2010,30(3):1-3.Shi Xiuzhi,Hu Haiyan,Du Xianghong,et al. Experimental study on flocculating sedimentation of tailings slurry in a vertical sand tank[J].Mining and Metallurgical Engineering,2010,30(3):1-3.
[ 3 ] 周生,惠林. 尾矿特性对充填工艺及胶结强度的影响[J].中国矿山工程,2011,40(3):10-12.Zhou Sheng,Hui Lin. Influence of tailings’ behavior on the filling technology and the cementing strength[J].China Mine Engineering,2011,40(3):10-12.
[ 4 ] 刘娅,丁剑,付国燕,等. 微细氰化尾矿颗粒絮凝沉降实验研究[J].黄金科学技术,2015,23(4):91-96.Liu Ya,Ding Jian,Fu Guoyan,et al. Experimental study on flocculation sedimentation of mine cyanide tailings particles[J].Gold Science and Technology,2015,23(4):91-96.
[ 5 ] 陈顺良. 全尾砂料仓模型试验的流态化特征与参数分析[J].矿冶工程,2000,20(3):9-11.Chen Shunliang. Fluidizing characteristics and parameter analysis of full-tailing bin model test[J].Mining and M etal lurgical Engineering,2000,20(3):9-11.
[ 6 ] 郑建明,潘明友,任凤玉,等. 平底型立式砂仓在毛家寨铁矿的应用研究[J].有色矿冶,2012,28(2):13-14.Zheng Jianming,Pan Mingyou,Ren Fengyu,et al. The applied research of flat-bottomed vertical sand bin in Maojiazhai iron mine[J].Non-ferrous Mining and Metallurgy,2012,28(2):13-14.
[ 7 ] 崔仑,王剑波,孙豁然,等. 提高立式砂仓放砂浓度的研究[J].黄金,1998,19(6):20-22.Cui Lun,Wang Jianbo,Sun Huoran,et al. Study on improving the density of discharged sand pulp from silo[J]. Gold,1998,19(6):20-22.
[ 8 ] 胡亚军.立式砂仓控压助流连续放砂试验研究[J].中国矿业,2012,21(增):623-625.Hu Yajun.Experimental study on the vertical sand tank consecutive discharging at control pressure and keep fluidity[J].China Mining Magazine,2012,21(Supp.):623-625.
[ 9 ] 惠林,邓代强. 冬瓜山铜矿极细粒级全尾砂高浓度连续放砂实践[J].有色金属(矿山部分),2008,60(5):10-12.Hui Lin,Deng Daiqiang. Practice of minuteness full tailings slurry at high concentration consecutive discharging in Dongguashan copper mine[J].Nonferrous M etal s(Mining Section),2008,60(5):10-12.
[ 10 ] 丁文军,李广辉,丁志浩. 某金矿充填系统优化改造[J].黄金科学技术,2016,24(4):87-91.Ding Wenjun,Li Guanghui,Ding Zhihao. Optimization of filling system for a gold mine[J].Gold Science and Technology,2016,24(4):87-91.
[ 11 ] 张青松. 高效沉降分离池分离特性的数值模拟[J].新疆石油天然气,2014,10(3):114-118.Zhang Qingsong. Numerical simulation of separation properties in settling and high-efficient separation basin[J].Xinjiang Oil & Gas,2014,10(3):114-118.
[ 12 ] 贾凯,王永田,龚豪. 浓缩机内煤泥水沉降流场和浓度分布的数值模拟[J].金属矿山,2012,41(6):120-123.Jia Kai,Wang Yongtian,Gong Hao. Numerical simulation of concentration distribution and coal slurry settlement flow field in thickener[J].M etal Mine,2012,41(6):120-123.
[ 13 ] Betancourt F,Bürger R,Diehl S,et al. Advanced methods of flux identification for clarifier-thickener simulation models[J].Minerals Engineering,2014,63(4):2-15.
[ 14 ] Betancourt F,Bürger R,Diehl S,et al. Modeling and controlling clarifier–thickeners fed by suspensions with time-dependent properties[J].Minerals Engineering,2014,62:91-101.
[ 15 ] Howells I,Landman K A,Panjkov A,et al. Time-dependent batch settling of flocculated suspensions[J].Applied Mathematical Modelling,1990,14(2):77-86.
[ 16 ] 侯权,潘红良,冯巧波. 基于Fluent的搅拌反应罐流场的优化研究[J].机械设计与研究,2005,21(3):78-82.Hou Quan,Pan Hongliang,Feng Qiaobo. Research of optimizing fluid field of agitator by fluent[J].Machine Design and Research,2005,21(3):78-82.
[ 17 ] 吴成娟. 沉淀池的数值模拟[J].环境科学与管理,2010,35(9):66-69.Wu Chengjuan. Numerical Simulation of Sedimentation Tank[J].Environmental Science and Management,2010,35(9):66-69.
[ 18 ] 施周,涂朦朦,王涛,等. 水温对平流式二沉池运行影响的数值模拟[J].安全与环境学报,2015,15(4):222-226.Shi Zhou,Tu Mengmeng,Wang Tao,et al. Numerical simulation of the effect of water temperature on the behaviors of a rectangular secondary sediment tank[J].Journal of Safety and Environment,2015,15(4):222-226.
[ 19 ] 徐长贺,谭立新,杨欢,等. 考虑絮凝作用的辐流式二次沉淀池的三维数值模拟[J].水资源与水工程学报,2017,28(1):157-162.Xu Changhe,Tan Lixin,Yang Huan,et al. Three-dimensional numerical simulation of radial flow secondary sedimentation tank with the consideration of flocculation[J].Journal of Water Resources and Water Engineering,2017,28(1):157-162.
[ 20 ] 刘百仓,马军,黄社华,等. 模拟沉淀池流速场的层流模型扩展性研究[J].中国给水排水,2007,23(11):102-104.Liu Baicang,Ma Jun,Huang Shehua,et al. Expansive study on laminar flow model for simulation of flow field in settling tank[J].China Water & Wastewater,2007,23(11):102-104.
[ 21 ] Usher S P,Scales P J. Steady state thickener modelling from the compressive yield stress and hindered settling function[J].Chemical Engineering Journal,2005,111(2/3):253-261.

[1] Heng REN, Peilin LI, Jinlu LI. Bibliometric Analysis of Gold Tailings Treatment and Comprehensive Utiliza-tion Research [J]. Gold Science and Technology, 2024, 32(5): 939-948.
[2] Yuhang SHENG, Dianfei PEI, Zhaojun QI, Xiaodong JING. Influence of Particle Size Composition of Tailings on Rheological Characteristics and Strength of Cemented Tailings Backfill [J]. Gold Science and Technology, 2024, 32(4): 631-639.
[3] Xiangrui HE, Xianyang QIU, Xiuzhi SHI, Xiaoyuan LI, Wei ZHI, Jun LIU, Yuanlai WANG. Study on the Movement Law of Overlying Strata in Underground Mining with Nonlinear Elastic Foundation Beam [J]. Gold Science and Technology, 2024, 32(4): 640-653.
[4] Songtao HU, Gengjie ZHU, Juntong ZHANG, Shiqun XU, Yunpeng KOU. Application Research on Cemented Fine Tailings Backfill of Gold Mines in the Jiaodong Area [J]. Gold Science and Technology, 2024, 32(3): 425-436.
[5] Tao ZHANG, Dexian LI, Pengqiang ZHANG, Guoliang ZHAO, Yu HE, Meng NIU, Junzhen YU. Experimental Study on the Ratio Proportioning of Nickel Slag-Full Tailings Mixed Aggregate [J]. Gold Science and Technology, 2024, 32(3): 437-444.
[6] Yunlin YU, Kepeng HOU, Bajiu YANG, Yong CHENG, Taihong LU, Nannan ZHANG. Study on Pillar Mining Scheme of Gaofengshan Ore Section in Yunxi [J]. Gold Science and Technology, 2024, 32(3): 445-457.
[7] Bo LI, Chen WEN, Xiuzhi SHI. Optimization of Stope Sidewall Controlled Blasting Parameters for High-Stress Fan-Shaped Medium-Depth Hole [J]. Gold Science and Technology, 2024, 32(3): 511-522.
[8] Kuan LIU, Guanwang MO, Xiang LI, Pinghuan SHEN, Bo WAN, Jiankun LIU. Optimization of the Construction Parameters of Super-large Section Flat Structure Tunnel [J]. Gold Science and Technology, 2024, 32(2): 330-344.
[9] Kaibin WANG, Qin LIU, Hongtao WANG. Study on the Load Transfer Characteristics and Influence Factors of Anchora-ge Segment of Pressure-type Anchor Cable [J]. Gold Science and Technology, 2024, 32(1): 123-131.
[10] Zefeng XU, Xiuzhi SHI, Rendong HUANG, Wenzhi DING, Xin CHEN. Study on Filling Pipeline Optimization Based on Full Pipe Transportation [J]. Gold Science and Technology, 2024, 32(1): 160-169.
[11] Jielin LI, Yiliang LIU, Yupu WANG, Zaili LI, Keping ZHOU, Chunlong CHENG. Influence of Forced-Exhaust Mixed Ventilation Parameters on the Cooling Effect of Artificial Cooling in High-temperature Blind Roadway [J]. Gold Science and Technology, 2024, 32(1): 63-74.
[12] Yunmei XU, Liwei YUAN, Haonan LONG. Sensitivity Analysis of Stability Influencing Factors of Dry Heap Tailings Reservoir [J]. Gold Science and Technology, 2023, 31(6): 1014-1022.
[13] Wenwen MENG, Peng LI. Tailings Disposal Policy and Comprehensive Utilization Practice in Gold Industry [J]. Gold Science and Technology, 2023, 31(6): 1023-1034.
[14] Honglu FEI, Hainan JI, Jie SHAN. Optimization and Comparative Experimental Study of Charge Structure of Water Medium Interval on Open-air Step [J]. Gold Science and Technology, 2023, 31(6): 930-943.
[15] Wenfa SHAN, Xiancheng MAO, Zhankun LIU, Hao DENG, Jin CHEN, Wei ZHANG, Haizheng WANG, Xin YANG. Numerical Simulation of Metallogenic Processes of Dayingezhuang Gold Deposit in Jiaodong Peninsula and Its Prospecting Significance [J]. Gold Science and Technology, 2023, 31(5): 707-720.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!