img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (2): 160-169.doi: 10.11872/j.issn.1005-2518.2018.02.160

Previous Articles     Next Articles

Study on Filling Cementitious Materials Based on Lead-Zinc Smelting Slag and Its Application

SHI Caixing 1,2,GUO Lijie 1,2,LI Wenchen 1,2,ZHANG Dan 1,2   

  1. 1.Beijing General Research Institute of Mining and Metallurgy Technology Group,Beijing 100260,China;2.National Center for International Joint Research on Green Metal Mining(NCGMM),Beijing 100260,China
  • Received:2017-11-08 Revised:2017-12-04 Online:2018-04-30 Published:2018-05-19

Abstract:

In order to make full use of a large amount of solid waste and tailings from a lead-zinc mine in Guangdong Province,the filling cementitious material based on lead-zinc smelting slag was developed.Through the experimental study of mechanical activation,it is determined that the grinding time of lead-zinc smelting slag is 70 min.Through the experimental study of chemical activation,the composition of raw materials was determined as follows:smelting slag,cement,sodium silicate and gypsum.Among them,the smelting slag composition:cement clinker is 8∶2;dosage of sodium silicate is 3%,gypsum content is 8%.The concentration of filling slurry prepared by cementitious material and classified tailings is 75%,when the cement sand ratio is 1∶6,the 3 d strength is up to 2.68 MPa and 28 d strength up to 3.97 MPa,superior to the strength of filler prepared by P.O42.5 cement at a cement sand ratio of 1∶4.The diffusion test shows that the filling slurry prepared by this kind of cementitious material has better flow performance,which can meet the gravity transportation condition of the mine.SEM test results show that there are a large amount of ettringite generated inside the filling test block prepared by cementitious material of that type in early stage and a large amount of calcium silicate hydrate (C-S-H)gel generated in late period of more compact structure.

Key words: cementitious material, lead-zinc smelting slag, mechanical activation, chemical activation, strength, filling ratio, diffusion degree, curing mechanism

CLC Number: 

  • TD853 

[1] 陈茂祺.有色金属工业固体废物综合利用概况[J].矿冶,1997,6(1):82-88.
 Chen Maoqi.Comprehensive utilization of solid waste from nonferrous metalindustry[J].Mining and Metallurgy,1997,6(1):82-88.
[2] 李国洲,张燕云,马泳波,等.镍冶金渣综合利用现状[J].中国冶金,2017,27(8):1-5.
 Li Guozhou,Zhang Yanyun,Ma Yongbo,et al.Comprehensive utilization of nickel metallurgical residue[J].China Metallurgy,2017,27(8):1-5.
[3] 郝晓平,韩进文,高志强,等.锌冶炼废渣的综合利用[J].无机盐工业,2017,49(7):57-60.
 Hao Xiaoping,Han Jinwen,Gao Zhiqiang,et al.Comprehensive utilization of zinc smelting slag[J].Inorganic Chemicals Industry,2017,49(7):57-60.
[4] 杨志强,陈得信,高谦,等.金川充填胶凝材料研究进展与废弃物综合利用展望[J].福州大学学报(自然科学版),2017,45(4):610-616.
 Yang Zhiqiang,Chen Dexin,Gao Qian,et al.Research advance on filling cementing material and prospect for comprehensive utilization of waste in Jinchuan mine[J].Journal of Fuzhou University(Natural Science Edition),2017,45(4):610-616.
[5] 杨志强,王永前,高谦,等.金川镍矿废弃物在充填采矿中利用现状与展望[J].矿产综合利用,2017(3):22-28.
 Yang Zhiqiang,Wang Yongqian,Gao Qian,et al.Present research situation and prospect of nickel utilization of wastes in filling mining technology in Jinchuan mine[J].Multipurpose Utilization of Mineral Resources,2017(3):22-28.
[6] 郭利杰,余斌.中国金属矿山充填技术与装备的现状和未来[J].采矿技术,2011,11(3):12-14.
 Guo Lijie,Yu Bin.Present situation and future of filling technology and equipment for metal mines in China[J].Mining Technology,2011,11(3):12-14.
[7] 王新民,古德生,张钦礼.深井矿山充填理论与管道输送技术[M].长沙:中南大学出版社,2010:1-6.
 Wang Xinmin,Gu Desheng,Zhang Qinli.Filling Theory and Pipeline Transportation Technology in Deep Mine[M].Changsha:Central South University Press,2010:1-6.
[8] 史秀志,范玉乾,尚雪义.基于PCA-BP神经网络模型的充填体强度预测[J].黄金科学技术,2016,24(3):64-69.
 Shi Xiuzhi,Fan Yuqian,Shang Xueyi.Strength prediction of filling body based on PCA and BP neural networks[J].Gold Science and Technology,2016,24(3):64-69.
[9] 孙小巍,吴陶俊.碱激发矿渣胶凝材料的试验研究[J].硅酸盐通报,2014,33(11):1-3.
 Sun Xiaowei,Wu Taojun.Experimental research of alkali-activated slag cementitious material[J].Bulletin of the Chinese Ceramic Society,2014,33(11):1-3.
[10] 梁志强.新型矿山充填胶凝材料的研究与应用综述[J].金属矿山,2015,44(6):164-170.
 Liang Zhiqiang.Review on development and application of new type backfilling cementing materials in mining industry[J].Metal Mine,2015,44(6):164-170.
[11] 彭小芹,刘朝,李三,等.碱激发钢渣矿渣胶凝材料凝结硬化性能研究[J].湖南大学学报(自然科学版),2015,42(6):47-52.
 Peng Xiaoqin,Liu Chao,Li San,et al.Research on the settling and hardening performance of alkali-activated steel slag-slag based on cementitious materials[J].Journal of Hunan University (Natural Sciences),2015,42(6):47-52.
[12] 赵传卿,胡乃联.充填胶凝材料的发展与应用[J].黄金,2008,29(1):25-29.
 Zhao Chuanqing,Hu Nailian.Development and application of cementing filling material[J].Gold,2008,29(1):25-29.
[13] 中华人民共和国国家质量监督检验检疫总局.GB-T18046-2008,用于水泥和混凝土中的粒化高炉矿渣粉[S].北京:中国标准出版社,2008.
 State Administration of Quality Supervision, Inspection and Quarantine of People’s Republic of China.GB-T18046-2008,Ground Granulated Blast Furnace Slag Used for Cement and Concrete[S].Beijing:Standards Press of China,2008.
[14] 张丹.基于铅锌尾矿/铅锌冶金渣制备矿山采空区充填材料的研究[D].北京:中国地质大学(北京),2016.
 Zhang Dan.Study on the Mechanism of Synergistic Activation of Lead and Zinc Tailing/Metallurgical Slag and the Preparation of Filling Material for Mine Goaf[D].China University of Geosciences (Beijing),2016.
[15] 李顺,文梓芸.矿渣—煤渣复合水泥激发剂及其作用机理[J].硅酸盐学报,2008,36(1):113-118.
 Li Shun,Wen Ziyun.Activator for GGBFS-SCC composite cement and its interaction mechanism[J].Journal of the Chinese Ceramic Society,2008,36(1):113-118.
[16] 薛杉杉,郭利杰.尾矿与冶炼废渣协同制备新型充填胶凝材料研究[J].江西建材,2015(12):108-113.
 Xue Shanshan,Guo Lijie.Study on preparation of new filling cementing material by coordination of tailings and smelting slag[J].Jiangxi Building Materials,2015(12):108-113.
[17] 孙超.矿渣—粉煤灰混合胶凝体系研究[D].大庆:东北石油大学,2006.
 Sun Chao.Research on the Mixed Cementitious System of Slag-Fly Ash[D].Daqing:Northeast Petroleum University,2006.
[18] 中华人民共和国建设部.GB/T 50081-2002,普通混凝土力学性能试验方法标准[S].北京:中国建筑工业出版社,2003.
 Ministry of Construction of the People’s Republic of China.GB/T 50081-2002,Standard for test method of mechanical properties on ordinary concrete[S].Beijing:China Architecture & Building Press,2003.

[1] Wei LIU, Xiaoyu YAN, Qingpeng LIU, Xinran SUN. Experimental Study on Shear Strength of Dump Slope in Mining Area Enhan-ced by Root-Soil Composite [J]. Gold Science and Technology, 2024, 32(5): 871-881.
[2] Yuhang SHENG, Dianfei PEI, Zhaojun QI, Xiaodong JING. Influence of Particle Size Composition of Tailings on Rheological Characteristics and Strength of Cemented Tailings Backfill [J]. Gold Science and Technology, 2024, 32(4): 631-639.
[3] Ying SHI, Ruiyang NIE, Shitong ZHOU, Sicheng LU, Zixuan QING. Effect of Sulfate-Containing Wastewater on the Properties of Phosphogypsum-Based Cemented Paste Backfill [J]. Gold Science and Technology, 2024, 32(3): 416-424.
[4] Songtao HU, Gengjie ZHU, Juntong ZHANG, Shiqun XU, Yunpeng KOU. Application Research on Cemented Fine Tailings Backfill of Gold Mines in the Jiaodong Area [J]. Gold Science and Technology, 2024, 32(3): 425-436.
[5] Yu ZHANG, Xiaomin LIU, Yi’an SHI, Tielin CHEN, Zhankui WANG, Wenhai CHEN, Jiaqi SUN, Pingsheng AN. Damage Mechanism of Anchor Bolt Structure Under Dynamic and Static Pull-out Loads [J]. Gold Science and Technology, 2024, 32(3): 481-490.
[6] Jielin LI,Jingyao WANG,Yigai XIAO,Xiaoshuang LI. Research on Meso-mechanical Properties of Rock Under Different Stress Paths Based on Discrete Element Method [J]. Gold Science and Technology, 2023, 31(1): 102-112.
[7] Guangsheng DU,Shijiang CHEN,Hailong WU. Evolution of Macro and Meso Mechanical Properties of Granite Under the Influence of Temperature [J]. Gold Science and Technology, 2022, 30(6): 935-947.
[8] Xianfeng XU,Pengfei XING,Yong WANG,Suihong WANG. Experimental Study on Rock Mechanical Properties Based on L-Type Rebound Instrument [J]. Gold Science and Technology, 2022, 30(4): 550-558.
[9] Yefan LIU,Ying SHI. Study on Dynamic Mechanical Characteristics of Phosphogypsum Cemented Filling Body [J]. Gold Science and Technology, 2022, 30(4): 574-584.
[10] Ziyang ZHANG,Ping CAO,Zhizhen LIU,Feng XIAO. Study on Creep Characteristics and Nonlinear Creep Model of Argillaceous Siltstone [J]. Gold Science and Technology, 2022, 30(3): 449-459.
[11] Yongliang FAN, Jiqiang CUI, Yuankun ZHANG, Feng LI, Chunyun HUANG, Yuantong GU, Jianyuan HE. Influence of Mixed Coarse Aggregate Ratio on Strength and Fluidity of Filling Slurry [J]. Gold Science and Technology, 2022, 30(2): 263-271.
[12] Bin LIN,Zhuhua TIAN,Yuman CHEN. Experimental Study on Effect of Water Content on Repeated Shear Strength of Remolded Red Clay [J]. Gold Science and Technology, 2021, 29(5): 680-689.
[13] Baijin LI,Xiang LI,Yan WANG,Tubing YIN,Xibing LI. Effect of Thermal Shock on the Dynamic Tensile Mechanical Behavior of Granite [J]. Gold Science and Technology, 2021, 29(4): 545-554.
[14] Long HAI,Bo XU,Xin ZHAO. Optimization of Aggregate Gradation of Paste Filling Material Prepared by Construction Waste [J]. Gold Science and Technology, 2021, 29(4): 573-581.
[15] Xin ZHAO,Long HAI,Bo XU,Tongjun CHENG. Experimental Study on Preparation of Paste Filling Materials from Power Plant Ash [J]. Gold Science and Technology, 2021, 29(4): 582-592.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!