img

Wechat

Adv. Search

Gold Science and Technology ›› 2018, Vol. 26 ›› Issue (2): 170-178.doi: 10.11872/j.issn.1005-2518.2018.02.170

Previous Articles     Next Articles

Numerical Simulation of Fracture and Acoustic Emission Evolution of Hetero-geneous Rocks

CHENG Hao 1,2,XU Tao 2,ZHOU Guanglei 2,FANG Ke 2   

  1. 1.Tianjin Harbour Engineering Co.,Ltd.,China Communications Construction Co.,Ltd.,Tianjin   300450,China;2.Centre for Rock Instability & Seismicity Research,Northeastern University,Shenyang   110819,China
  • Received:2017-07-13 Revised:2017-09-29 Online:2018-04-30 Published:2018-05-19

Abstract: Based on strain softening constitutive model,a damage softening constitutive model of heterogeneous rocks was established by considering the heterogeneity of rock material and the weakening characteristics of mechanical properties during damage process.The difference scheme of damage softening constitutive model was deduced and the further development of the damage softening constitutive model was achieved in FLAC3D under VC++ environment.The influence of different homogenization on mechanical properties and acoustic emission characteristic of rocks were numerically investigated. The results show that material heterogeneity has remarkable influence on the mechanical properties of rock samples. With the increase of material heterogeneity,there is a transition from ductile behavior into brittle fracture in rock failure. Meanwhile,peak strength and peak strain of rocks gradually increase,but residual strength of rocks gradually decreases.It is also found that the through-going shear fractures in the rock specimen lag behind for the more heterogeneous rock. Furthermore,there is a transition from low intensity and high frequency to high intensity and low frequency in AE characteristics of rock under uniaxial loading with an increase in heterogeneity of rock,and three typical AE patterns,swarm shock,foreshock-main shock-aftershock,and main shock,can be observed.

Key words: FLAC3D, strain softening, heterogeneity, rock failure, acoustic emission, compressive strength

CLC Number: 

  • TU443

[1] Ohnaka M,Mogi K.Frequency characteristics of acoustic emission in rocks under uniaxial compression and its relation to the fracturing process to failure[J].Journal of Geophysical Research Solid Earth,1982,87(B5):3873-3884.
[2] 陈永强.非均匀材料有效力学性能和破坏过程的数值模拟[D].北京:清华大学,2001.
 Chen Yongqiang.Numerical Simulations of Effective mechanical Properties and Failure process of Heterogeneous Materials[D].Beijing:Tsinghua University,2001.
[3] Feng X T,Pan P Z,Zhou H.Simulation of the rock microfracturing process under uniaxial compression using an elastic-plastic cellular automaton[J].International Journal of Rock Mechanics & Mining Sciences,2006,43(7):1091-1108.
[4] Pan P Z,Feng X T,Hudson J A.Study of failure and scale effects in rocks under uniaxial compression using 3D cellular automata[J].International Journal of Rock Mechanics & Mining Sciences,2009,46(4):674-685.
[5] Potyondy D,Cundall P.A bonded-particle model for rock [J].International Journal of Rock Mechanics & Mining Sciences,2004,41 (8):1329-1364.
[6] Fakhimi A,Villegas T.Application of dimensional analysis in calibration of a discrete element model for rock deformation and fracture[J].Rock Mechanics & Rock Engineering,2007,40(2):193-211.
[7] 裴觉民.数值流形方法与非连续变形分析[J]. 岩石力学与工程学报,1997,16(3):279-292.
 Pei Juemin.Numerical manifold method and discontinuous deformation analysis[J].Chinese Journal of Rock Mechanics and Engineering,1997,16(3):279-292.
[8] Ma G,An X,He L.The numerical manifold method:Areview[J].International Journal of Computational Methods,2010,7(1):1-32.
[9] Tang C A.Numerical simulation of progressive rock failure and associated seismicity[J].International Journal of Rock Mechanics & Mining Sciences,1997,34(2):249-261.
[10] Tang C A,Liu H,Lee P K K,et al.Numerical studies of the influence of microstructure on rock failure in uniaxial compression - Part I:Effect of heterogeneity[J].International Journal of Rock Mechanics & Mining Sciences,2000,37(4):555-569.
[11] 徐涛,杨天鸿,唐春安,等.孔隙压力作用下煤岩破裂及声发射特性的数值模拟[J].岩土力学,2004,25(10):1560-1564,1574.
 Xu Tao,Yang Tianhong,Tang Chunan,et al.Numerical simulation of failure and induced acoustic emission characteristics of coal/rock under pore pressure[J].Rock and Soil Mechanics,2004,25(10):1560-1564,1574.
[12] Xu T,Tang C A,Zhao J,et al.Modelling the time-dependent rheological behaviour of heterogeneous brittle rocks [J].Geophysical Journal International,2012,189 (3):1781-1796.
[13] ITASCA Consulting Group,Inc.UDEC:Universal distinct  element  code  theory  and  background[M].Minneapolis,Minnesota:Itasca  consulting  Group  Inc,2005.
[14] Schlangen E,Van Mier J G M. Crack propagation in sandstone:A combined  experimental  and  numerical approach[J].Rock Mechanics and Rock Engineering,1995,28(2):93-110.
[15] Chen S,Zhao J.A study of UDEC modelling for blast wave propagation in jointed rock masses[J].International Journal of Rock Mechanics & Mining Sciences,1998,35 (1):93-99.
[16] 潘鹏志. 岩石破裂过程及其渗流—应力耦合特性研究的弹塑性细胞自动机模型[D].武汉:中国科学院研究生院(武汉岩土力学研究所),2006.
 Pan Pengzhi.Research on Rock Fracturing Process and Coupled Hydro-mechanical Effect Using an Elasto-plastic Cellular Automation[D].Wuhan:Institute of Rock & Soil Mechanics,Chinese Academy of  Sciences,2006.
[17] 陈育民,刘汉龙.邓肯—张本构模型在FLAC3D 中的开发与实现[J].岩土力学,2007,28(10):2123-2126.
 Chen Yumin,Liu Hanlong.Development and implementation of Duncan-Chang constitutive model in FLAC3D[J]. Rock and Soil Mechanics,2007,28(10):2123-2126.
[18] 杨文东,张强勇,张建国.基于FLAC3D 的改进Burgers蠕变损伤模型的二次开发研究[J].岩土力学,2010,31(6):1956-1964.
 Yang Wendong,Zhang Qiangyong,Zhang Jianguo.Second development of improved Burgers creep damage constitutive model of rock based on FLAC3D[J].Rock and Soil Mechanics,2010,31(6):1956-1964.
[19] Weibull W.A statistical distribution function of wide applicability[J].Journal of Applied Mechanics,1951,18(3):293-297.
[20] Itasca Consulting Group. FLAC3D User’s Manual (Version 3.0)[M].Minneapolis,Minnesota:Itasca consulting Group Inc,2005.
[21] Mogi K.Earthquakes and fractures [J]. Tectonophysics,1967,5(1):35-55.
[22] Jeager J C.Rock failure at lower confining pressure[J].Engineering,1960,189: 283-284.
[23] Chong K P,Hoyt P M,Smith J W,et al.Effect of strain rate on oil shale fracturing[J].International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1980,17(1):35-43.
[24] 雷远见,王水林.基于离散元的强度折减法分析岩质边坡稳定性[J].岩土力学,2006,27(10):1693-1698.
 Lei Yuanjian,Wang Shuilin.Stability analysis of jointed rock slope by strength reduction method based on UDEC [J].Rock and Soil Mechanics,2006,27(10):1693-1698.
[25] Mouthereau F,Fillon C,Ma K F.Distribution of strain rates in the Taiwan orogenic wedge[J].Earth and Planetary Science Letters,2009,284(3/4):361-385.
[26] 赵伏军,李夕兵,赵国彦,等.新城金矿顶底柱开采稳定性研究[J].黄金科学技术,2002,10(6):15-19.
 Zhao Fujun,Li Xibing,Zhao Guoyan,et al.Research on stability of the roof and  bottom  pillar  in  Xincheng  gold  mine [J].Gold  Science  and  Technology,2002,10(6):15-19.
[27] 毕洪涛,王存文,李威.海下金矿床开采岩体破裂及灾变的微震监测研究 [J].黄金科学技术,2010,18(5):52-55.
 Bi Hongtao,Wang Cunwen,Li Wei.The study of microseismic monitoring on rock failure and disaster-induced in gold mining undersea[J].Gold Science and Technology,2010,18(5):52-55.

[1] Ying SHI, Ruiyang NIE, Shitong ZHOU, Sicheng LU, Zixuan QING. Effect of Sulfate-Containing Wastewater on the Properties of Phosphogypsum-Based Cemented Paste Backfill [J]. Gold Science and Technology, 2024, 32(3): 416-424.
[2] Chang LI, Jian ZHANG, Zinan CHEN, Zhonghui KAN, Rui ZHAO, Xiaojun WANG. Application of Data Trend Fusion Analysis Method in Rock Failure Identification and Early Warning [J]. Gold Science and Technology, 2024, 32(3): 523-538.
[3] Zhixiang LIU,Mengyang YAN,Shuangxia ZHANG,Shuai XIONG,Kai WANG. Damage Constitutive Model Considering the Effect of Rock Microdefects [J]. Gold Science and Technology, 2023, 31(3): 507-515.
[4] Kefan ZHOU,Kewei LIU,Tengfei GUO. Study on Failure Characteristics of Inclined Soft and Hard Interbedded Rocks Based on Acoustic Emission [J]. Gold Science and Technology, 2022, 30(6): 923-934.
[5] Xiaohui HUANG,Kewei LIU,Zhanxing ZHOU,Sizhou MA,Tengfei GUO. Study on Acoustic Emission and Microscopic Characteristics of Red Sandstone Under Compression-Shear After High Temperature [J]. Gold Science and Technology, 2022, 30(5): 764-777.
[6] Minggui ZHENG,Yu DANG. Tax, Enterprise Size and High-quality Development—Micro Evidence from Mining Enterprises [J]. Gold Science and Technology, 2022, 30(5): 787-796.
[7] Xianfeng XU,Pengfei XING,Yong WANG,Suihong WANG. Experimental Study on Rock Mechanical Properties Based on L-Type Rebound Instrument [J]. Gold Science and Technology, 2022, 30(4): 550-558.
[8] Yefan LIU,Ying SHI. Study on Dynamic Mechanical Characteristics of Phosphogypsum Cemented Filling Body [J]. Gold Science and Technology, 2022, 30(4): 574-584.
[9] Yuqing ZHENG,Yong CHEN,Jinhua WANG,Xueyi SHANG,Caiyun LIU. Acoustic Emission Localization Method for Complex Structure Based on Improved Interaction Distance and Dijkstra Algorithm and Its Application [J]. Gold Science and Technology, 2022, 30(3): 427-437.
[10] Xuebin XIE, Tao LIU, Huan ZHANG. Identification and Classification Method of Underground AE Source Based on Improved CEEMDAN-DCNN [J]. Gold Science and Technology, 2022, 30(2): 209-221.
[11] Qiang ZENG,Xiaorong HUANG,Xiaojun WANG,Qinglin CHEN,Jian LIU,Cong GONG. Experimental Study on Rock Burst Tendency and Acoustic Emission Characteristics of Limestone at Different Buried Depths [J]. Gold Science and Technology, 2021, 29(6): 863-873.
[12] Minggui ZHENG,Biying YOU,Ping WU. Can Commercial Credit Financing Promote the High Quality Development of Mining Enterprises——Based on the Moderating Effect of Enterprise Scale [J]. Gold Science and Technology, 2021, 29(6): 874-883.
[13] Long HAI,Bo XU,Xin ZHAO. Optimization of Aggregate Gradation of Paste Filling Material Prepared by Construction Waste [J]. Gold Science and Technology, 2021, 29(4): 573-581.
[14] Xin ZHAO,Long HAI,Bo XU,Tongjun CHENG. Experimental Study on Preparation of Paste Filling Materials from Power Plant Ash [J]. Gold Science and Technology, 2021, 29(4): 582-592.
[15] Rong LU,Fengshan MA,Jie ZHAO,Jie GUO,Jinzhong GU,Yeqiang HUANG. Analysis of Acoustic Emission Index Characteristics for Indoor Uniaxial Com-pression Test of Backfill [J]. Gold Science and Technology, 2021, 29(2): 218-225.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!