img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (5): 659-677.doi: 10.11872/j.issn.1005-2518.2019.05.659

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Trace Elemental Compositions of Iron Oxides from the Lannitang Porphyry Cu-Au Deposit in the Zhongdian Region (Northwest) and the Geological Significances:A LA-ICP-MS Study

Jianheng GUO1,2(),Chengbiao LENG1,3(),Xingchun ZHANG1,Wei ZHANG1,Chongjun YIN4,Lujia ZHANG4,Zhendong TIAN1,2   

  1. 1. State Key Laboratory of Ore Deposit Geochemistry,Institute of Geochemistry,Chinese Academy of Sciences,Guiyang 550081,Guizhou,China
    2. Chinese Academy of Science University,Beijing 100039,China
    3. State Key Laboratory of Nuclear Resources and Environment,East China University of Technology,Nanchang 330013,Jiangxi, China
    4. Yunnan Huaxi Mineral Resources Co. ,Ltd. ,Kunming 650200,Yunnan,China
  • Received:2019-06-28 Revised:2019-08-03 Online:2019-10-31 Published:2019-11-07
  • Contact: Chengbiao LENG E-mail:124322611@qq.com;lcb8207@163.com

Abstract:

The Zhongdian area, located in northwestern Yunnan, is an important porphyry belt in China. It hosts a large number of Triassic intermediate-felsic porphyritic intrusions and porphyry deposits such as Pulang porphyry Cu-Au, Xuejiping porphyry Cu, Chundu porphyry Cu, Langdu Cu skarn and Lannitang porphyry Cu-Au deposit. The Lannitang porphyry Cu-Au deposit is located in west belt of the Zhongdian area. The magnetite in Lannitang porphyry Cu-Au deposit is widespread and it occurred as disseminated and vein types in potassic and chlorite-sericite alteration zone.Specularite is also observed frequently in the post-mineralization dolomite-quartz coarse veins.We conducted the petrography and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to determine the texture and composition of iron oxides (magnetite and specularite). In this study, we identified three types of magnetite. Type-Ⅰ magnetite is disseminated in potassic alteration of deposit. It is generally contains ilmenite lamellas. Type-Ⅱ and Type-Ⅲ magnetite are occurred in magnetite single vein and magnetite-bearing quartz stockwork vein separately. Type-Ⅱ and Type-Ⅲ are distributed in potassic and chlorite-sericite alteration zone. The LA-ICP-MS analyses show that Type-Ⅰ magnetite is relatively rich in V, Ni and Mg than other two types of magnetite. Type-Ⅱ and Type-Ⅲ magnetite are more enriched in Mn, Zn, Sn, Sc and high-Ni/Cr ratio than Type-Ⅰ magnetite.Type-Ⅱ and Type-Ⅲ magnetite has similar content of many trace elements. The concentration of Cr,Ga,Ni and Co in specularite is obviously lower than those of magnetite. The ilmenite lamellae and low-Ni/Cr(Ni/Cr<1) ratio revealed that Type-Ⅰ magnetite belongs to igneous magnetite. Type-Ⅱ and Type-Ⅲ are distributed in veinlets and displayed high-Ni/Cr ratio (Ni/Cr>1). We suggested that they are hydrothermal magnetite. Type-Ⅰ magnetite (igneous) is intergrown with hydrothermal minerals including chlorite and sericite and it has quiet similar contents of Ti, Al and Cr with the other two hydrothermal magnetite.We suggest that Type-Ⅰ magnetite (igneous) experienced late-stage fluid alteration, which induced the loss of Ti, Al and Cr.The similar content of trace element between Type-Ⅱ and Type-Ⅲ magnetite indicated that they may precipitate from same period of fluid.In combination with previous studies, we propose that the presence of elements such as Al, Mn, Mg and Sc are in solid solution within magnetite (and/or specularite),but the Ca, S, Cu, Ba, Sr and Zr may be present in micro-/nano-scale mineral inclusions.The widespread presence of magnetite-hematite and specularite in the potassic alteration zone and low Mn concentration of magnetite indicates a high oxygen fugacity of the Lannitang porphyry Cu-Au deposit (magnetite-hematite buffer).

Key words: porphyry Cu-Au deposit, magnetite, LA-ICP-MS, fugacity, hydrothermal alteration, Lannitang, Northwest Yunnan

CLC Number: 

  • P618.51

Fig.1

Regional geological map of the Zhongdian arc(modified after references [30,31])"

Fig.2

Geological sketch map of the Lannitang porphyry Cu-Au deposit (modified after reference [34])"

Fig.3

Cross section of No.1 exploration line in the Lannitang porphyry Cu-Au deposit (location in Fig.2;modified after reference [34])"

Fig.4

Photos of some representative ore samples at different mineralization stages from the Lannitang porphyry Cu-Au deposit"

Fig.5

Microphotos of typical ore samples from Lannitang porphyry Cu-Au deposit"

Table 1

Ore sample number,location and its description"

样品编号 钻孔编号 采样位置/m 磁铁矿分类 样品描述
ZK1-2-6 ZK1-2 180 Ⅰ类+Ⅲ类 绿泥石—绢云母化,石英+磁铁矿脉体
ZK1-2-7 ZK1-2 251 Ⅰ类+Ⅲ类 绿泥石—绢云母化,石英+磁铁矿脉体
ZK1-2-9 ZK1-2 279.5 Ⅲ类 绿泥石—绢云母化,石英+磁铁矿脉
ZK1-2-11 ZK1-2 326 Ⅱ类 钾化叠加绿泥石—绢云母化,单一磁铁矿脉
ZK1-2-16 ZK1-2 360 Ⅲ类 钾化蚀变,石英+磁铁矿脉
ZK1-2-30 ZK1-2 720 Ⅰ类 钾化蚀变,单一磁铁矿脉与石英+磁铁矿脉体
ZK3-7-2 ZK3-7 196.7 Ⅲ类 钾化蚀变叠加绿泥石—绢云母化蚀变石英+磁铁矿脉
ZK3-7-4 ZK3-7 198 Ⅲ类 钾化蚀变叠加绿泥石—绢云母化石英+磁铁矿脉
ZK3-7-5 ZK3-7 198.7 Ⅱ类 钾化蚀变叠加绿泥石—绢云母化蚀变单一磁铁矿脉与石英+磁铁矿脉
ZK3-7-9 ZK3-7 228 Ⅱ类+Ⅲ类 钾化蚀变,石英+磁铁矿脉
ZK3-7-10 ZK3-7 312 镜铁矿 绿泥石—绢云母化蚀变,石英+白云石+黄铁矿+镜铁矿
ZK3-7-11 ZK3-7 314 Ⅲ类 钾化蚀变,石英+磁铁矿呈网脉状
ZK4-7-9 ZK4-7 895 Ⅰ类+Ⅲ类 绿泥石—绢云母化蚀变,石英+磁铁矿脉
LNT14-2 平硐矿石堆 Ⅰ类+Ⅲ类 钾化蚀变叠加绢云母化蚀变,石英+磁铁矿脉

Fig.6

Multi-element spider diagrams of iron oxides from the Lannitang porphyry Cu-Au deposit"

Fig.7

Box and whisker plots for important magnetite minor and trace element of iron oxides from the Lannitang porphyry Cu-Au deposit"

Table 2

LA-ICP-MS trace element analysis data of iron oxides from the Lannitang porphyry Cu-Au deposit(×10-6)"

样品 Ⅰ类:浸染状磁铁矿(17个)
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
1-2-7-01 97.3 980 2 044 4.91 4 321 445 5 675 623 3.3 27.1 23.2 24.0 75.7 0.2 4.15 8.6 1.1
LNT14-2-01 98.6 18 59 0.58 1 599 58.3 5 364 663 131.0 1.2 20.3 21.1 47.2 0.3 3.21 7.1 5.6
LNT14-2-02 98.5 291 226 0.50 1 457 <LOD 5 475 566 3.8 20.8 20.2 28.8 37.8 2.9 3.28 6.2 5.8
LNT14-2-03 98.8 34 171 0.58 1 538 9.9 4 302 634 8.0 1.3 23.1 21.0 41.0 0.2 3.65 5.8 3.3
LNT14-2-04 98.2 61 242 0.46 1 403 1 178 7 039 782 207.0 4.4 13.6 13.7 49.9 0.6 3.66 7.4 3.4
LNT14-2-05 98.3 37 215 0.74 1 345 82.9 6 903 680 158.0 1.3 16.0 19.6 36.0 0.8 3.33 7.9 5.1
LNT14-2-06 97.3 134 3 287 0.55 1 455 838 7 335 780 148 6.6 22.3 13.3 68.9 0.1 13.4 7.7 2.4
1-2-6-16 97.4 271 1 924 1.42 3 840 478 6 645 629 192 2.3 14.3 21.4 28.9 1.2 5.0 8.3 11.8
1-2-7-03 98.4 115 441 1.06 2 010 1 322 5 246 972 206 2.6 12.5 21.3 74.7 <LOD 4.07 6.8 4.6
1-2-7-05 98.2 377 1 775 1.56 1 155 45.2 2 381 1 335 197 7.8 28.7 45.7 11.2 12.0 1.67 4.2 7.3
1-2-30-1-10 97.8 632 1 516 1.46 9 132 1 737 3 922 2 233 209 3.8 10.0 57.4 21.1 3.4 3.29 5.4 3.1
1-2-30-1-12 96.8 3 532 4 103 0.84 5 593 34.3 1 244 1 347 320 10.5 7.4 72.9 31.2 2.8 5.82 1.4 8.5
1-2-30-1-14 95.4 1 102 5 168 2.72 5 671 1 159 8 767 1 135 126 20.6 10.0 22.9 39.2 36.0 4.18 7.7 48.9
4-7-9-1-01 96.2 782 3 703 3.41 3 074 <LOD 8 897 1 646 216 26.2 10.6 28.5 36.6 40.9 5.46 10.1 47.3
4-7-9-1-02 96.4 1 115 3 774 2.59 3 762 40.6 6 656 1 499 236 30.1 11.0 24.7 47.5 31.5 5.14 6.7 36.0
4-7-9-1-03 95.6 1 508 4 378 15.4 7 207 1 282 7 410 1 679 6.5 27.5 10.0 28.7 22.1 1.6 3.96 6.2 2.7
4-7-9-1-04 95.6 8 062 700 1.25 1 965 268 3 434 1 363 68.5 6.8 7.9 10.9 66.4 0.7 4.19 2.3 21.9
平均值 97.3 1 121 1 984 2.35 3 325 561 5 688 1 092 143 11.8 15.4 28.0 43.3 7.96 4.56 6.46 12.8
标准差 1.15 1 987 1 746 3.58 2 372 595 2 118 487 95.3 10.8 6.4 16.2 19.0 13.41 2.48 2.14 15.4
样品 Ⅱ类:单一磁铁矿脉(15个)
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
3-7-5-08 98.4 86 383 1.23 1 793 48.4 5 395 973 6.9 3.5 27.9 28.8 68.8 3.4 3.83 6.7 10.5
3-7-5-10 95.3 1 676 4 686 16.58 1 256 41.2 7 127 561 119.0 18.3 26.9 37.5 47.4 1.1 7.29 5.2 2.1
3-7-5-11 99.0 210 490 1.55 1 324 143 1 809 895 4.7 5.8 28.6 23.2 37.9 2.6 2.86 6.5 2.7
3-7-5-12 97.1 1 447 2 499 9.08 6 241 1362 3 378 893 6.6 15.6 27.3 24.4 63.8 1.0 4.63 1.5 0.1
3-7-9-01 97.0 1 793 2 258 11.23 946 21.9 3 184 708 11.9 17.1 27.8 24.9 59.1 0.9 4.23 2.9 0.5
3-7-9-02 99.2 20 74 0.94 1 862 348 2 267 887 11.2 4.2 54.0 45.6 27.8 3.0 2.29 2.8 1.0
3-7-9-03 97.0 831 1 416 7.07 1 321 175 9 542 1 083 20.6 9.3 55.6 39.3 <LOD 0.2 3.09 2.1 0.1
3-7-9-07 98.0 120 285 2.09 2 915 800 7 943 1 598 4.3 3.4 53.3 34.5 33.9 1.1 2.18 8.6 1.2
1-2-11-01 98.2 486 764 1.20 1 428 1 085 3 649 796 62.7 5.9 14.2 11.9 17.7 1.6 2.92 7.8 2.1
1-2-11-01 97.9 670 680 1.78 2 316 1 394 5 656 886 27.5 6.9 13.6 12.3 15.8 1.3 2.41 10.2 0.2
1-2-11-04 96.8 700 4 322 2.70 2 883 153 8 943 889 12.7 7.2 16.0 9.3 25.8 1.8 9.8 5.0 17.9
1-2-11-04 98.0 378 866 1.86 1 683 623 5 278 2 243 245 9.0 15.7 18.1 33.8 1.5 3.75 10.2 0.3
1-2-11-05 98.4 682 297 1.83 16 132 700 5 315 781 8.3 7.3 13.7 16.7 13.7 0.9 2.72 10.1 10.0
1-2-11-06 98.2 465 959 0.85 3 642 172 4 373 707 24.8 2.8 14.8 15.3 10.2 0.8 2.55 3.5 18.3
1-2-11-07 97.4 1 439 2 441 3.62 4 559 1 303 3 438 871 11.2 8.0 15.0 17.3 17.4 2.1 2.84 4.5 23.0
平均值 97.7 734 1 495 4.20 3 353 558 5 153 985 38.5 8.3 27.0 23.9 33.8 0.8 3.83 3.5 18.3
标准差 0.99 590 1 457 4.70 3 820 518 2 361 417 64.5 4.9 15.4 11.1 19.4 22.6 2.1 3.5 19.6
样品 Ⅲ类:石英+磁铁矿脉
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
1-2-7-06 95.8 2 831 5 495 22.97 1 708 59.9 7 338 427 3.9 5.6 4.5 13.2 147.2 2.1 7.43 4.5 23.0
1-2-7-09 97 1 232 3 801 2.01 2 106 266 4 229 1 034 15.4 1.6 3.5 32 139 2.84 7.32 5.95 7.1
1-2-7-10 97.3 860 3 832 4.17 5 221 156 5 882 1 234 5 28.7 3.3 6.3 77.2 4.91 18.58 3.17 8.1
3-7-11-01 98.8 148 1 512 1.43 5 989 111 2 248 1 210 1.1 9.5 2.8 8.6 17.2 <LOD 9.97 <LOD <LOD
3-7-11-02 97.1 1 187 3 350 13.42 9 929 806 6 084 1 146 4.7 21.4 2.2 12.9 63.7 1.3 36.5 11 0.3
样品 w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
3-7-11-04 97.7 705 4 221 12.38 3 510 230 4 049 842 3.4 44.2 4.7 12.9 144.4 <LOD 58.41 8.5 10.1
3-7-11-05 98.5 76 302 0.4 1 384 159 5 949 433 159 2.7 16.5 23 101.6 2.4 4.4 11.9 0.5
3-7-11-07 96.3 1 549 2 813 8.2 4 843 114 3 987 402 32.5 14.8 12.9 27.9 95.4 0.3 6.2 3.0 0.6
3-7-11-09 96.2 816 196 0.78 2 971 40.7 18 451 895 8.4 107.1 1.2 1.5 18.8 0.5 3.5 4.2 3.9
1-2-9-01 98.5 27 250 0.69 3 011 46.5 6 205 687 10.5 2.2 18.4 17.6 76.8 1.2 4.08 4.8 6.8
1-2-9-03 98.2 122 978 1.26 2 162 2 6 658 706 3.8 1.6 17.4 17.3 83.8 0.2 4.44 9.2 5.6
1-2-9-05 98.8 45 80 0.32 1 236 379 4 104 452 3.5 1.3 17.8 20.7 40.1 0.6 4.18 10.3 3.1
1-2-9-07 96.0 1 039 3 822 12.06 1 061 50 4 424 383 3.4 6.7 18.9 22.7 86.8 0.2 7.59 15.0 3.4
1-2-16-01 96.9 268 3 085 1.27 4 443 432 4 800 371 10.8 2.1 12.4 26.6 66.0 0.3 6.81 9.5 1.2
1-2-16-02 98.5 11 102 0.76 6 147 106 5 909 533 6.3 0.6 18.0 15.7 101.4 0.1 4.02 10.4 8.4
1-2-16-03 98.9 32 173 0.7 3 507 30.2 3 374 491 4.3 1.9 16.3 20.3 227.3 <LOD 3.27 8.8 5.3
1-2-16-05 98.4 83 523 0.63 5 043 98.5 4 727 464 5.6 1.3 14.2 20.7 91.1 0.8 3.78 8.8 26.8
LNT14-2-09 96.7 1 122 3 018 6.4 3 778 127 8 464 1 088 3.7 13.3 27.0 23.2 73.7 2.6 7.43 5.7 11.3
LNT14-2-11 96.0 2 233 3 795 17.32 2 851 39.1 6 398 1 041 16.9 24.8 26.3 26.4 82.6 0.2 8.43 2.6 1.0
LNT14-2-13 95.8 1 097 5 879 10.54 7 826 151 6 705 1 174 5.2 4.8 29.4 16.0 426.1 4.5 11.61 9.4 13.0
4-7-5-03 99.0 10 69 1.09 2 845 56 2 319 1 421 192 4.4 53.2 27.4 34.8 0.2 2.38 6.6 <LOD
4-7-5-04 96.1 1 305 2 040 5.97 3 032 25.2 9 257 1 256 3.1 10.8 54.9 34.4 75.3 1.1 2.95 8.0 4.1
4-7-5-05 94.7 5 157 7 328 1.59 7 391 710 3 560 279 9.3 10.1 12.1 75.0 41.0 1.7 6.39 6.8 1.0
4-7-5-06 96.9 1 770 3 690 2.15 1 868 37 2 066 185 7.2 5.2 10.9 66.8 17.4 1.3 4.74 16.1 4.3
4-7-5-07 97.9 1 626 2 831 3.24 2 440 197 849 141 3.6 5.9 13.8 75.4 19.0 1.0 5.13 8.4 0.1
4-7-5-08 98.4 686 2 250 1.17 5 017 557 2 767 227 91.3 5.2 12.1 37.4 13.3 1.8 3.66 8.4 <LOD
4-7-5-09 97.2 591 3 166 2.60 5 908 398 4 790 670 29.6 11.3 13.7 28.2 15.0 3.9 2.12 4.0 4.1
4-7-5-10 96.7 763 4 359 2.46 1 888 10.6 3 748 681 37.7 9.2 13.8 29.9 17.2 1.2 2.19 4.4 3.2
1-2-6-01 97.0 756 3 395 2.75 4 963 335 5 446 626 122 14.1 16.3 28.5 16.7 5.8 1.62 5.8 7.9
1-2-6-02 97.7 374 3 103 1.23 1 079 38.9 3 733 731 34 12.8 13.1 37.0 13.4 3.4 3.55 6.3 6.0
样品 w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
1-2-6-02 97.7 374 3 103 1.23 1 079 38.9 3 733 731 34.0 12.8 13.1 37.0 13.4 3.4 3.55 6.3 6.0
1-2-6-03 98.1 423 1 742 1.74 1 037 89.7 3 546 738 42.5 9.6 14.0 31.5 13.4 1.7 1.86 4.3 16.6
1-2-6-04 97.6 808 2 659 2.08 1 499 139 4 334 690 35.5 17.4 11.9 30.9 17.5 7.6 2.07 6.6 7.1
1-2-6-05 96.1 2561 4 951 15.72 2 649 428 4 376 138 14.8 42.2 17.3 27.3 33.6 0.1 2.67 5.0 1.2
1-2-6-06 95.3 2773 5 650 13.94 2 146 705 7 544 277 4.2 59.9 16.9 25.7 46.4 1.9 3.03 3.1 4.0
1-2-6-08 95.0 3141 6 430 18.68 2 269 154 3 629 76 12.3 49.9 17.6 28.5 42.5 <LOD 3.85 5.6 2.1
1-2-6-09 96.6 2103 3 795 17.01 1 293 58.5 2 519 14 4.2 44.7 17.7 23 42.5 1.4 3.49 6.9 6.7
1-2-6-10 96.1 927 3 327 6.02 1 369 122 8 470 1637 15.6 16.1 8.1 26.5 23.4 0.6 5.36 4.3 2.0
1-2-6-11 95.8 852 3 690 3.54 2 209 82.2 11 094 1299 17.9 14.5 9 19 35.7 0.7 4.23 8.0 1.4
1-2-6-12 98.4 658 1 144 3.17 1 843 21.3 4 147 753 0.1 15.1 11.9 33.1 69.8 0.7 4.92 6.3 2.3
1-2-6-13 97.9 935 1 895 3.02 1 886 162 5 125 725 11.3 6.9 12.6 33.3 86.6 1.8 5.44 6.3 0.4
1-2-6-14 95.5 3 830 4 692 4.9 2 207 130 5 632 718 20.8 73.3 12.3 30.4 176.1 0.2 8.24 2.9 0.3
1-2-6-15 98.3 158 330 2.55 3 611 416 6 018 828 1.4 4.6 12.5 31.3 152.9 2.3 4.62 10.3 1.3
3-7-9-08 96.4 2 423 2 694 6.72 1 933 45.9 8 212 808 11.4 118 11.7 31.5 112.8 7.7 6.32 4.1 0.8
3-7-4-05 98.8 251 598 2.2 1 560 276 3 998 730 12.5 1.9 12.5 25.8 86.1 25.7 4.65 5.4 0.7
3-7-4-06 98.3 686 1 739 2.73 1 755 305 4 133 734 1.2 7.0 12.5 25.2 113.5 <LOD 4.98 3.8 0.3
3-7-2-09 98.0 370 2 162 4.35 3 741 523 6 435 709 10.8 4.9 12.9 19.4 219.3 <LOD 6.27 6.2 0.3
3-7-2-10 96.9 1 024 2 364 11.62 5 853 946 9 042 967 2.8 27.8 14.1 25.0 39.7 9.1 14.44 5.4 6.8
3-7-2-11 97.7 183 324 9.39 1 621 144 9 116 930 6.3 13.1 13.2 15.5 22.8 10.3 12.57 4.9 8.6
4-7-9-3-01 98.4 368 766 2.62 2 236 664 4 535 911 12.5 39.5 8.5 19.3 65.5 10.6 17.42 5.2 5.7
4-7-9-3-02 98.2 764 1 642 4.24 1 657 85.7 2 133 923 16.8 20.3 14.2 27.1 26.4 15.8 3.82 6.0 6.4
4-7-9-3-03 95.6 1 141 5 190 10.51 4 650 148 8 234 886 2.2 6.2 29.1 15.6 1 139 10.3 7.72 4.6 9.7
4-7-9-3-04 97.5 559 2 951 3.14 1 458 110 3 795 747 4.8 4.7 34.3 22.1 138.3 13.4 6.99 6.2 8.5
4-7-9-3-05 99.2 29 286 0.15 1 763 705 755 1184 6.9 0.4 0.1 <LOD 1.5 1.3 2.08 10.9 0.5
平均值 97.3 1047 2651 5.51 3158 231 5384 729 20.9 18.6 15.2 26.4 97 3.61 7.35 6.8 5.28
标准差 1.18 1064 1853 5.64 1966 235 2887 365 37.6 24.8 10.4 13.8 163 5.04 9.06 2.96 5.56
样品 镜铁矿(8个)
w(FeO)/% Mg Al Sc Si Ca Ti V Cr Mn Co Ni Zn Cu Ga Sn Pb
3-7-10-01 97.7 2 893 708 0.14 2 068 1 183 4 204 1 636 8.1 61.9 5.3 0 124.6 0.6 3.8 <LOD 21.3
3-7-10-02 98.6 1 123 419 0.33 1 554 458 3 199 935 1.7 25 1.6 0.7 39.1 0.6 2.44 0.1 8.9
3-7-10-03 98.7 15 842 0.27 1 849 83.4 3 128 1 204 12.5 0 0.3 2.4 10.0 0.7 2.74 <LOD 0.7
3-7-10-04 98.4 33 1 335 <LOD 1 249 32.3 4 219 1 814 8.3 2.5 0.3 <LOD 10.0 <LOD 2.96 0.1 1.5
3-7-10-05 99.0 10 1 105 0.09 1 174 63.7 1 965 759 9.9 3.4 0.3 0.2 6.3 0.3 2.6 <LOD 24.6
3-7-10-06 97.9 51 726 1.88 994 502 9 040 318 1.7 1.3 1.4 1.7 10.3 0.5 3.53 19.5 3.2
4-7-8-01 99.1 7 230 0.35 1 359 43.3 3 154 181 <LOD 0 0.5 0.3 2.8 <LOD 2.32 8.8 0.8
4-7-8-02 97.4 12 876 0.9 805 402 12 028 482 6.9 0.7 1.1 1.9 12.1 0.7 2.97 10.2 2.0
平均值 98.4 518 780 0.5 1 381 346 5 117 916 6.14 11.9 1.35 0.9 26.9 0.43 2.92 4.84 7.87
标准差 0.62 1 034 352 0.62 425 392 3 509 599 4.48 21.9 1.68 0.96 41.0 0.3 0.52 7.32 9.71

Fig.8

Time resolved signals for LA-ICP-MS analyses of four samples"

Fig.9

Correlation plots of some elements for iron oxides from the Lannitang porphyry Cu-Au deposit"

Fig.10

Oxygen fugacity and oxidation potential of sulfate at the stage of porphyry mineralization (modified after references [54,57])"

Fig.11

Discrimination diagram of magnetite genesis in Lannitang porphyry Cu-Au deposit[9,10] (a)(Ti+V)-Ni/(Cr+Mn);(b)(Ti+V)-(Al+Mn)"

1 陈华勇,韩金生 .磁铁矿单矿物研究现状、存在问题和研究方向[J].矿物岩石地球化学通报,2015,34(4):724-730.
Chen Huayong , Han Jinsheng .Study of magnetite:Problems and future[J].Bulletin of Mineralogy,Petrology and Geochemistry,2015,34(4):724-730.
2 Dare S A S , Barnes S J , Beaudoin G .Variation in trace element content of magnetite crystallized from a fractionating sulfide liquid,Sudbury,Canada:Implications for provenance discrimination[J].Geochimica et Cosmochimica Acta,2012,88(7):27-50.
3 Dare S A S , Barnes S J , Beaudoin G ,et al .Trace elements in magnetite as petrogenetic indicators[J].Mineralium Deposita,2014,49(7):785-796.
4 Nadoll P , Koenig A E .LA-ICP-MS of magnetite:Methods and reference materials[J].Journal of Analytical Atomic Spectrometry,2011,26(9):1872-1877.
5 Nadoll P , Mauk J , Hayes T ,et al .Geochemistry of magnetite from hydrothermal ore deposits and host rocks of the mesoproterozoic belt supergroup,United States[J].Economic Geology,2012,107(60):1275-1292.
6 邱检生,张晓琳,胡建,等 .鲁西碳酸岩中磷灰石的原位激光探针分析及其成岩意义[J].岩石学报,2009,25(11):2855-2865.
Qiu Jiansheng , Zhang Xiaolin , Hu jian ,et al .In-situ LA-ICPMS analysis of apatite from carbonatites in west Shandong Province:Implications for petrogenesis[J].Acta Petrologica Sinica,2009,25(11):2855-2865.
7 贾泽荣,詹秀春,何红蓼,等 .激光烧蚀—等离子体质谱结合归一定量方法原位线扫描检测石榴石多种元素[J].分析化学,2009,37(5):653-658.
Jia Zerong , Zhan Xiuchun , He Hongliao ,et al .Application of normalization for In-situ multi-element raster analysis in laser ablation-inductively coupled plasma mass spectrometry-illustrated with garnets[J].Chinese Journal of Analytical Chemistry,2009,37(5):653-658.
8 张乐骏,周涛发,范裕,等 .宁芜盆地陶村铁矿床磷灰石的LA-ICP-MS研究[J].地质学报,2011,85(5):834-848.
Zhang Lejun , Zhou Taofa , Fan Yu ,et al .A LA-ICP-MS study of apatite from the Taocun magnetite-apatite deposit,Ningwu basin[J].Acta Geologica Sinica,2011,85(5):834-848.
9 Dupuis C , Beaudoin G .Discriminant diagrams for iron oxide trace element fingerprinting of mineral deposit types[J].Mineralium Deposita,2011,46(4):319-335.
10 Nadoll P , Angerer T , Mauk J L ,et al .The chemistry of hydrothermal magnetite:A review[J].Ore Geology Reviews,2014,61(5):1-32.
11 Pisiak L K , Canil D , Lacourse T ,et al .Magnetite as an indicator mineral in the exploration of porphyry deposits:A case study in till near the mount polley Cu-Au deposit,British Columbia,Canada[J].Economic Geology,2017,112(4):919-940.
12 胡浩,段壮, Luo Yan ,等 .鄂东程潮铁矿床磁铁矿的微量元素组成及其矿床成因意义[J].岩石学报,2014,30(5):1292-1306.
Hu Hao , Duan Zhuang , Luo Yan ,et al .Trace element systematics of magnetite from the Chengchao iron deposit in the Daye district:A laser ablation LCP-MS study and insights into ore genesis[J].Acta Petrologica Sinica,2014,30(5):1292-1306.
13 Hu H , Li JW , Lentz D ,et al .Dissolution-reprecipitation process of magnetite from the Chengchao iron deposit:Insights into ore genesis and implication for in-situ chemical analysis of magnetite[J].Ore Geology Reviews,2014,57:393-405.
14 Wen G , Li J W , Hofstra A H ,et al .Hydrothermal reequilibration of igneous magnetite in altered granitic plutons and its implications for magnetite classification schemes:Insights from the Handan-Xingtai iron district,North China Craton[J].Geochimica et Cosmochimica Acta,2017,215(15):255-270.
15 Cornell RM , Schwertmann U .The Iron Oxides:Structure,Properties,Reactions,Occurrences,and Uses [M]. 2 eds.Weinheim:Wiley-VCH,2003.
16 Einaudi M T .Description of skarns associated with porphyry copper plutons[C]//Advances in Geology of the Porphyry Copper Deposits.Tucson:The University of Arizona Press,1982:139-183.
17 Meinert L D .Skarn zonation and fluid evolution in the Groundhog Mine,central mining district,New Mexico[J].Economic Geology,1987,82(3):523-545.
18 Meinert L D , Dipple G M , Nicolescu S .World skarn deposits[C]//Economic Geology 100th Anniversary Volume.Colorado:Society of Economic Geologists,2005:299-336.
19 侯增谦,莫宣学 .“三江”地区义敦岛弧的构造—岩浆演化特征[C]//青藏高原地质文集. 北京:地质出版社,1991.
Hou Zengqian , Mo Xuanxue .Tectonic-magmatic evolution characteristics of the Yidun Island Arc in the Sanjiang area[C]//Geological Anthology of Qinghai-Tibet Plateau.Beijing:Geological Publishing House,1991.
20 曾普胜,莫宣学,喻学惠,等 .滇西北中甸地区中—酸性斑岩及其含矿性初步研究[J].地球学报,1999,20:359-366.
Zeng Pusheng , Mo Xuanxue , Yu Xuehui ,et al .Study on medium-acid porphyry and its ore-bearing properties in Zhongdian area,northwestern Yunnan[J].Acta Geoscientica Sinica,1999,20:359-366.
21 曾普胜,王海平,莫宣学,等 .中甸岛弧带构造格架及斑岩铜矿前景[J].地球学报,2004,25(5):535-540.
Zeng Pusheng , Wang Haiping , Mo Xuanxue ,et al .Tectonic setting and prospects of porphyry copper deposits in Zhongdian Island Arc[J].Acta Geoscientica Sinica,2004,25(5):535-540.
22 杨岳清,侯增谦,黄典豪,等 .中甸弧碰撞造山作用和岩浆成矿系统[J].地球学报,2002,23(1):17-24.
Yang Yueqing , Hou Zengqian , Huang Dianhao ,et al .Collision orogenic process and magmatic metallogenic system in Zhongdian Arc[J].Acta Geoscientica Sinica,2002,23(1):17-24.
23 李文昌,尹光候,卢映祥,等 .中甸普朗复式斑岩体演化及40Ar-39Ar同位素依据[J].地质学报,2009,83(10):1421-1429.
Li Wenchang , Yin Guanghou , Lu Yingxiang ,et al .The evolution and 40Ar-39Ar isotopic evidence of the Pulang complex in Zhongdian[J].Acta Geologica Sinica,2009,83(10):1421-1429.
24 侯增谦,杨岳清,曲晓明,等 .三江地区义敦岛弧造山带演化和成矿系统[J].岩石学报,2004,78(1):109-120.
Hou Zengqian , Yang Yueqing , Qu Xiaoming ,et al .Tectonic evolution and mineralization systems of Yidun Arc orogen in Sanjiang region,China[J].Acta Geologica Sinica,2004,78(1):109-120.
25 李建康,李文昌,王登红,等 .中甸弧燕山晚期成矿事件的Re-Os定年及成矿规律研究[J].岩石学报,2007,23(10):2415-2422.
Li Jiankang , Li Wenchang , Wang Denghong ,et al .Re-Os dating for ore-forming event in the late of Yanshan epoch and research of ore-forming regularity in Zhongdian Arc[J].Acta Petrologica Sinica,2007,23(10):2415-2422.
26 冷成彪,张兴春,王守旭,等 .滇西北中旬松诺含矿斑岩的锆石SHRIMP U-Pb年龄及地质意义[J].大地构造与成矿学,2008,32(1):124-130.
Leng Chengbiao , Zhang Xingchun , Wang Shouxu ,et al .Shrimp zircon U-Pb dating of the Songnuo ore-hosted porphyry,Zhongdian,northwest Yunnan,China and its geological implication[J].Geotectonica et Metallogenia,2008,32(1):124-130.
27 王守旭,张兴春,冷成彪,等 .滇西北普朗斑岩铜矿锆石离子探针U-Pb年龄:成矿时限及地质意义[J].岩石学报,2008,24(10):2313-2321.
Wang Shouxu , Zhang Xingchun , Leng Chengbiao ,et al .Shrimp U-Pb dating of the Pulang porphyry copper deposit,northwestern Yunnan,China:The ore-forming time limitation and geological[J].Acta Petrologica Sinica,2008,24(10):2313-2321.
28 庞振山,杜杨松,王功文,等 .云南普朗复式岩体锆石U-Pb年龄和地球化学特征及其地质意义[J].岩石学报,2009,25(1):159-165.
Pang Zhenshan , Du Yangsong , Wang Gongwen ,et al .Single-grain zircon U-Pb isotope ages,geochemistry and its implication of Pulang complex in Yunnan Province,China[J].Acta Petrologica Sinica,2009,25(1):159-165.
29 任江波,许继峰 ,陈建林 .中甸岛弧成矿斑岩的锆石年代学及其意义[J].岩石学报,2011,27(9):2591-2599.
Ren Jiangbo , Xu Jifeng , Chen Jianlin .Zircon geochronology and geolpgical implications of ore-forming porphyries from Zhongdian arc[J].Acta Petrologica Sinica,2011,27(9):2591-2599.
30 Leng C B , Zhang X C , Hu R Z ,et al .Zircon U-Pb and molybdenite Re-Os geochronology and Sr-Nd-Pb-Hf isotopic constraints on the genesis of the Xuejiping porphyry copper deposit in Zhongdian,northwest Yunnan,China[J].Journal of Asian Earth Sciences,2012,60(22):31-48.
31 Leng C B , Huang Q Y , Zhang X C ,et al .Petrogenesis of the Late Triassic volcanic rocks in the southern Yidun arc,SW China:Constraints from the geochronology,geochemistry,and Sr-Nd-Pb-Hf isotopes[J].Lithos,2014,190-191(2):363-382.
32 Wang X S , Bi X W , Leng C B ,et al .Geochronology and geochemistry of Late Cretaceous igneous intrusions and Mo-Cu-(W) mineralization in the southern Yidun Arc,SW China:Implications for metallogenesis and geodynamic setting[J].Ore Geology Reviews,2014,61:73-95.
33 Wang X S , Hu R Z , Bi X W ,et al .Petrogenesis of Late Cretaceous I-type granites in the southern Yidun Terrane:New constraints on the Late Mesozoic tectonic evolution of the eastern Tibetan Plateau[J].Lithos,2014,208-209:202-219.
34 紫金矿业集团西南矿产勘察院 .云南香格里拉县烂泥塘及外围地勘项目2013年地质年报[R].云南:紫金矿业集团西南矿产勘察院,2013.
Southwest Mineral Exploration Institute of Zijin Group.Geological annual report of Lannitang and peripheral area in Shangri-la County ,Yunnan Province[R].Yunnan:Southwest Mineral Exploration Institute of Zijin Group,2013.
35 Liu Y , Hu Z , Gao S ,et al .In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1):34-43.
36 Ilton E S , Eugster H P .Base metal exchange between magnetite and a chloride-rich hydrothermal fluid[J].Geochimica et Cosmochimica Acta,1989,53(2):291-301.
37 Ray G , Webster I .Geology and chemistry of the low Ti magnetite-bearing Heff Cu-Au skarn and its associated plutonic rocks,Heffley Lake,south-central British[J].Columbia Exploration and Mining Geology,2007,16 (16):159-186.
38 Kamvong T , Zaw K , Siegele R .PIXE/PIGE microanalysis of trace elements in hydrothermal magnetite and exploration significance:A pilot study[C]//5th Australian Conference on Nuclear and Complementary Techniques of Analysis and 9th Vacuum Society of Australia.Melbourne:University of Melbourne,2007:197-200.
39 Góngora P A , Gleeson S A , Samson I M .Trace element geochemistry of magnetite and its relationship to Cu-Bi-Co-Au-Ag-U-W mineralization in the Great Bear magmatic zone,NWT,Canada[J].Economic Geology,2014,109:1901-1928.
40 潘兆橹 .结晶学与矿物学[M].北京:地质出版社,1984:67-71.
Pan Zhaolu .Crystallography and Mineralogy[M].Beijing:Geological Publishing House,1984:67-71.
41 段士刚,董满华,张作衡,等 .西天山敦德铁矿床磁铁矿原位LA-ICP-MS元素分析及意义[J].矿床地质,2014,33(6):1325-1337.
Duan Shigang , Dong Manhua , Zhang Zuoheng ,et al .A LA-ICP-MS analysis of elements inmagnetite from Dunde iron deposit in western Tianshan Mountains,Xinjiang:Constraints on genesis of the deposit[J].Mineral Deposits,2014,33(6):1325-1337.
42 Sack R O , Ghiorso M S .An internally consistent model for the thermodynamic properties of Fe-Mg-titanomagnetite-aluminate spinels[J].Contribions to Mineralogy and Petrology,1991,106:474-505.
43 Waychunas G A . Crystal chemistry of oxides and oxy-hydroxides[C]//Lindsley D H.Oxide Minerals:Petrologic and Magnetic Significance.Washington:Mineralogical Society American, 1991:11-61.
44 White A F , Peterson M L , Hochella M F .Electrochemistry and dissolution kinetics of magnetite and ilmenite[J].Geochimica et Cosmochimica Acta,1994,58(8):1859-1875.
45 Sillitoe R H .Porphyry copper systems[J].Economic Geology,2010,105(105):3-41.
46 芮宗瑶,黄崇轲,齐国明,等 .中国斑岩铜(钼)矿床[M].北京:地质出版社,1984.
Rui Zongyao , Huang Chongke , Qi Guoming ,et al .The Porphyry Cu (Mo) Deposit in China[M].Beijing:Geological Publishing House,1984.
47 Ishihara S .The magnetite-series and ilmenite-series granitic rocks[J].Shigen-Chishitsu,1977,27:293-305.
48 Spong P L .Geochemistry of Magnetite from Convergent-margin Plutonic Rocks of Australia,Japan and New Zealand[D].Auckland:University of Auckland,1998.
49 Ohmoto H .Nonredox transformations of magnetite-hematite in hydrothermal systems[J].Economic Geology,2003,98(1):157-161.
50 Mücke A , Cabral A R .Redox and nonredox reactions of magnetite and hematite in rocks[J].Chemie der Erde- Geochemistry,2005,65(3):271-278.
51 Ballard J R , Palin M J , Campbell I H .Relative oxidation states of magmas inferred from Ce(Ⅳ)/Ce(Ⅲ) in zircon:Application to porphyry copper deposits of northern Chile[J].Contributions to Mineralogy and Petrology,2002,144(3):347-364.
52 Sun W D , Arculus R J , Kamenetsky V S ,et al .Release of gold-bearing fluids in convergent margin magmas prompted by magnetite crystallization[J].Nature,2004,431(7011):975-978.
53 Liang H Y , Sun W D , Su W C ,et al .Porphyry copper-gold mineralization at Yulong,China,promoted by decreasing redox potential during magnetite alteration[J].Economic Geology,2009,104 (4):587-596.
54 Sun W D , Liang H Y , Ling M X ,et al .The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2013,103(2):263-275.
55 Zhang H , Ling M X , Liu Y L ,et al .High oxygen fugacity and slab melting linked to Cu mineralization:Evidence from Dexing porphyry copper deposits,southeastern China[J].The Journal of Geology,2013,121(3):289-305.
56 Richards J P .Discussion of Sun et al:The link between reduced porphyry copper deposits and oxidized magmas[J].Geochimica et Cosmochimica Acta,2014,126(2):643-645.
57 Pokrovski G S , Dubrovinsky L S .Ion is stable in geological fluids at elevated temperatures and pressures[J].Science,2011,331(6020):1052.
58 林师整 .磁铁矿矿物化学、成因及演化的探讨[J].矿物学报,1982(3):166-174.
Lin Shizheng .A concribution on the chemistry,genesis and evolution of magnetite[J].Acta Mineralogica Sinica,1982(3):166-174.
59 Toplis M J , Carroll M R .An experimental study of the influence of oxygen fugacityon Fe-Ti oxide stability,phase relations,and mineral-melt equilibria in ferro-basaltic systems[J].Journal of Petrology,1995,36:1137-1170.
60 Sillitoe R H .Gold-rich porphyry deposits:Description of genetic models and their role in exploration and discovery[J].Economic Geology,2000,13:315-345.
61 Canil D , Grondahl C , Lacourse T ,et al .Trace elements in magnetite from porphyry Cu-Mo-Au deposits in British Columbia,Canada[J].Ore Geology Reviews,2016,72:1116-1128.
[1] Mingying TANG, Honglei ZHAN, Jian CHEN, Wei ZHU, Weidong LEI, Xin WANG, Zhengjiang DING, Shuangfei LI, Zheng MU. Distribution Characteristics and Geological Significance of Trace Elements of Sulfides in Qibaoshan Pb-Zn Polymetallic Deposit in Wulian,Shandong Province [J]. Gold Science and Technology, 2024, 32(5): 830-846.
[2] Zheyang LI, Hui XU, Feng XIE, Longlong LI, Xiaopu ZHANG, Xin YAO, Caibin WU. Study on Grinding Characteristics of Nano-composite Ceramic Ball as Magne-tite Fine Grinding Medium [J]. Gold Science and Technology, 2024, 32(4): 694-703.
[3] Bo LI,Shaohao ZOU,Deru XU,Xilian CHEN,Xuena WANG,Hua WANG. Composition Characteristics of Garnet in Xintianling Skarn-type Scheelite Deposit,South Hunan Province and Its Implications for the Tungsten Mineralization [J]. Gold Science and Technology, 2023, 31(2): 232-251.
[4] Zhenliang CAO,Xuelong LIU,Shoukui LI,Sihan LIU,Fanglan LI,Bowen ZHOU. Comparison of Geochemical Characteristics Between Yanshanian Ore-bearing Granites in Northwest Yunnan and Global Adakites [J]. Gold Science and Technology, 2023, 31(1): 15-25.
[5] Shengwei ZHANG,Teng DENG,Deru XU,Yueqiang ZHOU,Guojun DONG,Zenghua LI,Wen MA,Ke XU,Yan HAI. Genesis of Carbonaceous Material in the Wangu Gold Deposit and Its Relationship with Gold Mineralization [J]. Gold Science and Technology, 2022, 30(6): 835-847.
[6] Tai’an WAN,Deru XU,Wen MA,Shengwei ZHANG,Guojian WANG,Yubing BIAN,Bo LI. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold Deposit,Northeast Hunan and Its Implication to Gold Mineralization Mechanism [J]. Gold Science and Technology, 2022, 30(5): 676-690.
[7] Guochao HU, Xingke YANG, Cangzhi REN, Bin LI, Ke HAN, Le AN, Huixia CHAO. Characteristics of Ore-Controlling Rules of Matigou-Miaogou Gold Deposit in Fengxian County,Shaanxi Province [J]. Gold Science and Technology, 2019, 27(4): 469-479.
[8] Ouxiang WEI, Dayu ZHANG, Jinsong LIU, Xuefeng CHEN, Longxiang YE, Hua JIANG, Xiang QIAN, Taofa ZHOU. Geochronology and Genesis of Taxia Granodiorite Intrusion in the Northwest Jiangnan Proterozoic Terrane [J]. Gold Science and Technology, 2018, 26(6): 689-705.
[9] Xuelong LIU,Fucheng YANG,Changzhen ZHANG,Ying LUO,Shuaishuai WANG. Structural Characteristics and Mineralization of Xuejiping Porphyry Copper Deposit in Northwest Yunnan [J]. Gold Science and Technology, 2018, 26(4): 473-480.
[10] HOU Jianglong1,LI Jiankang,WANG Denghong,CHEN Zhenyu,DAI Hongzhang,LIU Lijun. Geochemical Characteristics and Geological Significance of Biotite in Granite Bodies of Jiajika Lithium Mine,Sichuan Province [J]. Gold Science and Technology, 2017, 25(6): 1-8.
[11] GENG Guojian,MA Baojun,CONG Ying,GUO Longlong. Discussion on the Thrust Nappe Structure Deformation of Qingchengzi and Gold Ore-controlling,Liaoning Province [J]. Gold Science and Technology, 2016, 24(4): 26-31.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!