img

Wechat

Adv. Search

Gold Science and Technology ›› 2019, Vol. 27 ›› Issue (5): 696-703.doi: 10.11872/j.issn.1005-2518.2019.05.696

• Mining Technology and Mine Management • Previous Articles     Next Articles

Investigation and Optimization of Processing Flowsheet for a Luoba Lead-zinc Mine in Gansu Province

Hepeng ZHOU1,2(),Jie HU1,Chaoyang DUAN3,Pan DENG3,Zhigang ZHONG1,Yongbing ZHANG1   

  1. 1. Faculty of Resource and Environmental Engineering,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
    2. Jiangxi Key Laboratory of Mining Engineering,Ganzhou 341000,Jiangxi,China
    3. Gansu Luoba Nonferrous Metal Group Co. ,Ltd. ,Longnan 742500,Gansu,China
  • Received:2018-03-21 Revised:2019-04-25 Online:2019-10-31 Published:2019-11-07

Abstract:

The lead and zinc mineral resources are very abundance in China,but the lead-zinc metal quantity is much short for further mining.The resources are not of natural endowment,with difficulty of utilization.Type of lead-zinc deposit is variety and associated elements are rich.Sulfide minerals have similar interface properties and are difficult to separate.Widespread as the occurrence of resource is,the ores are mostly very low-grade,complexity of multi-components and difficult of separation.All of this up make it difficult to recover such resources efficiently and comprehensively.It is necessary to carry out systematic process optimization and technical research in order to improve the comprehensive utilization.The Luoba lead-zinc deposit in Gansu Province is a mudstone-fine clastic lead-zinc deposit,associated with a small amount of silver and sulfur.With the long-term exploitation and utilization,the valuable metal content of lead and zinc in the ore decreases,while the content of carbonaceous and siliceous minerals increases,which brings great interference to the separation and recovery of lead and zinc.There are some problems in lead and zinc concentrate production,such as lead concentrate grade decrease,zinc concentrate containing excessive silicon.As a result,the present mineral processing technology and reagent system can’t adapt to the change of ore properties well.Therefore,a systematic process optimization and technical research should be carried out to find out the quality decline of concentrate and the possible problems in the process of concentration,and to explore the difficulties and physical factors in the recovery of lead and zinc flotation,so as to improve the comprehensive utilization level of resources.On the basis of detailed understanding of mineral processing technology and production status,an overall processing flowsheet investigation was conducted.It has been studied that the technical parameters and production conditions of each operation of grinding and floating process.Then the distribution of useful and harmful elements was identified.The problems existing in the production process were analyzed,the physical factors concerning the grade and quality of lead and zinc concentrate were proved.Then put forward a specific improvement program in order to optimize the existing process and technical conditions,and to provide a high efficiency foundation for carbolic lead-zinc resources recovery.The results show that the carbonaceous minerals,such as aphanitic graphite,are of high content in the ore.It is easy to be mud in the grinding process,and has good floatability and adsorption performance.Because of the interaction between the carbonaceous minerals and lead-zinc minerals,the adsorbing quantity of collectors for the lead-zinc minerals in slurry system was less than that of collectors without carbonaceous minerals.The carbonaceous minerals,such as aphanitic graphite,finally entered the concentrates,affecting the recovery and quality of lead and zinc minerals.High-alkali speed flotation technology,has solved the concentration recovery of lead and zinc mineral.But the content of silicon and carbon in lead and zinc concentrates is high. So,it needs to search some appropriate inhibitors in the separation process,to strengthening inhibition of zinc-sulfide minerals.At the same time,it is necessary to appropriately optimize the parameters of grinding process,to reduce the degree of argillation of the carbonaceous and siliceous gangue minerals.In order to improve the grade and quality of lead and zinc concentrate,it is necessary to find suitable collectors and reduce the viscosity of flotation foam.Through put forward a specific improvement program in order to optimize the existing process and technical conditions,and to provide a high efficiency foundation for carbolic lead-zinc resources recovery.

Key words: lead-zinc sulphide ore, process flowsheet investigation, grinding classification, process optimization, fine particles flotation, high efficiency recovery

CLC Number: 

  • TD952

Table 1

Chemical multi-element analysis results of mineral samples(%)"

元素及化合物名称质量分数元素及化合物名称质量分数
Pb0.717SiO249.192
Zn2.245K2O0.929
S3.43Na2O0.071
Cu0.003P2O50.012
Fe12.449As0.028
Sb0.001TiO20.059
Ag*15Cr2O30.076
In0.033NiO0.002
C6.996ZrO20.002
CaO14.885Ba0.014
MgO1.77CeO20.001
MnO1.432F0.023
Al2O34.899Cl0.001

Table 2

Analysis of composition and content of mineral samples(%)"

矿物名称质量分数矿物名称质量分数
方铅矿0.824黄玉0.036
车轮矿0.002滑石0.005
闪锌矿3.517高岭石3.086
红锌矿0.004绿泥石0.198
含锌菱铁矿0.081铬铁矿0.112
黄铁矿2.576白钛石0.089
黄铁矿0.004锆石0.003
毒砂0.008水铝石0.026
辉砷镍矿0.005方解石20.311
银黝铜矿0.002白云石1.025
石英37.091菱铁矿11.560
长石0.166铁白云石10.321
白云母8.048重晶石0.023
黑云母0.314磷辉石0.023
钙铝榴石0.058萤石0.032
硅灰石0.016其他0.428

Fig.1

Flowsheet of mineral processing technology in concentrator"

Table 3

Analysis results of grade and recovery of mineral products"

产品名称产率品位/%回收率/%
PbZnSiO2PbZnSiO2
铅精矿0.8548.434.433.9179.371.580.10
锌精矿4.050.7752.184.436.0088.470.47
尾矿95.100.080.2539.6014.639.9599.43
原矿100.000.522.3937.87100.00100.00100.00

Table 4

Particle size composition of grinding classification"

产品名称粒级/μm产率/%品位/%分布率/%
PbZnSiO2PbZnSiO2
磨机排矿+7456.070.262.5240.4725.6953.5559.81
-7443.930.962.7934.7174.3146.4540.19
合计100.00100.00100.00100.00
分级返砂+7490.680.812.9536.5477.4989.4791.67
-749.322.293.3832.3122.5110.538.33
合计100.00100.00100.00100.00
分级溢流+12519.880.132.6739.84.2920.0821.42
-125+7410.790.131.346.972.335.3113.73
-74+4514.140.13.1637.982.3516.9114.55
-45+386.311.023.3336.210.687.956.18
-3848.880.992.6933.3480.3549.7544.12
合计100.00100.00100.00100.00

Table 5

Particle size composition of mineral products"

产品名称粒级/μm产率/%品位/%分布率/%
PbZnSiO2PbZnSiO2
铅精矿+1253.1356.177.904.353.255.583.33
-125+745.3959.427.352.655.938.943.49
-74+4515.1068.555.151.6419.1517.546.05
-45+3811.7458.285.843.2912.6615.479.44
-3864.6349.363.604.9259.0152.4877.69
合计100.00100.00100.00100.00
选铅尾矿+12525.950.161.6047.4129.4816.6363.84
-125+7411.270.082.8741.866.4012.9624.48
-74+4514.760.183.493.7618.8720.642.88
-45+384.350.163.563.684.946.200.83
-3843.680.132.493.5240.3243.577.98
合计100.00100.00100.00100.00
锌精矿+12513.180.8552.786.7220.3313.34316.805
-125+7413.320.6553.034.4915.7113.54511.344
-74+4519.790.3253.113.8711.4920.15714.529
-45+386.970.2653.594.253.297.1625.619
-3846.740.5851.085.8349.1945.79351.702
合计100.00100.00100.00100.00
总尾矿+12515.490.100.1048.0215.519.8718.70
-125+7410.000.160.1541.6316.019.5610.47
-74+4515.520.130.1341.2120.2112.8616.09
-45+385.040.100.1841.315.055.785.24
-3853.960.080.1836.4843.2261.9249.51
合计100.00100.00100.00100.00
1 文金磊,朱一民,周菁,等.铅锌矿产资源特征及浮选工艺研究现状[J].矿产综合利用,2015(6):1-6.
WenJinlei,ZhuYimin,ZhouJing,et al.Research status of Pb-Zn mineral resource characteristics and flotation technology[J].Multipurpose Utilization of Mineral Resources,2015(6):1-6.
2 国土资源部.中国矿产资源报告[R].北京:地质出版社,2017:3-4.
Ministry of Land and Resources.China mineral resources report[R].Beijing:Geological Publishing House,2017:3-4.
3 薛亚洲,王海军.我国铅锌矿资源综合利用现状[J].中国矿业,2005,14(8):41-42.
XueYazhou,WangHaijun.The status of lead and zinc ore comprehensive utilization in China[J].China Mining Magazine,2005,14(8):41-42.
4 磨学诗,黄伟中,张雁生,等.提高多金属硫化铅锌矿浮选指标的研究[J].有色金属(选矿部分),2007(1):9-12.
MoXueshi,HuangWeizhong,ZhangYansheng,et al.Study and practice on floatation of complex lead-zinc sulfide minerals for increasing floatation index[J].Nonferrous Metals(Mineral Processing Section),2007(1):9-12.
5 LiangY Q,ZhangX D,ZhangH P,et al.Using a new bulk flotation process to enhance the recovery of mineral beneficiation in a lead-zinc sulfide-oxide mixed ore[J].Advanced Materials Research,2013,634-638:3545-3550.
6 姜美光,刘全军,杨俊龙,等.新疆某硫化铅锌矿选矿试验研究[J].矿冶,2014,23(1):26-30.
JiangMeiguang,LiuQuanjun,YangJunlong,et al.Study on processing of a lead and zinc sulfide ore from Xinjiang Province[J].Mining and Metallurgy,2014,23(1):26-30.
7 丘学民,陈国宝,张勤,等.从超细粒高铅锌氰化尾渣中浮选回收有价金属的试验研究[J].黄金科学技术,2017,25(6):61-67.
QiuXueming,ChenGuobao,ZhangQin,et al.Experimental study on flotation recovery of valuable metals from ultrafine cyanide tailing containing high grade lead and zinc[J].Gold Science and Technology,2017,25(6):61-67.
8 邱廷省,何元卿,余文,等.硫化铅锌矿浮选分离技术的研究现状及进展[J].金属矿山,2016,45(3):1-9.
QiuTingsheng,HeYuanqing,YuWen,et al.Research status and development of the lead-zinc sulfide ore flotation separation[J].Metal Mine,2016,45(3):1-9.
9 焦学尧,樊小龙,余平辉,等.甘肃厂坝铅锌矿床黄铁矿流体包裹体He-Ar同位素体系[J].黄金科学技术,2016,24(4):47-53.
JiaoXueyao,FanXiaolong,YuPinghui,et al.He-Ar isotopic system of fluid inclusions in pyrite from the Changba lead-zinc deposit in Gansu Province[J].Cold Science and Technology,2016,24(4):47-53.
10 张培鼎,严维良.白石嶂钼矿3 kt/d选厂选矿工艺流程的分析[J].有色金属工程,2011,1(4):24-28.
ZhangPeiding,YanWeiliang.The process of 3 kt/d Baishizhang molybdenum concentrator[J].Nonferrous Metals Engineering,2011,1(4):24-28.
11 焦科诚.云南羊拉某低品位细粒级难选铜矿选矿试验研究[J].有色矿冶,2013,29(1):23-26.
JiaoKecheng.Benefication test research of a low grade,fine-grained refractory copper ore in Yangla,Yunnan Province[J].Nonferrous Mining and metallurgy,2013,29(1):23-26.
12 FengQ C,WenS M,ZhaoW J,et al.Recovery of molybdenum from molybdenum ore with a high content of carbon by separating carbon from sulfur[J].Advanced Materials Research,2013,634-638:3450-3453.
13 方夕辉,曾怀远,陈文亮,等.新疆某复杂低品位氧化铅锌矿选矿工艺[J].有色金属工程,2014,4(2):49-53.
FangXihui,ZengHuaiyuan,ChenWenliang.Beneficiation process of a complex low-grade lead-zinc ore in Xinjiang[J].Nonferrous Metals Engineering,2014,4(2):49-53.
14 陈启如,孙广周,黄斌,等.云南某地硫化铅锌矿优先浮选分离试验研究[J].矿产综合利用,2018(4):62-66.
ChenQiru,SunGuangzhou,HuangBin,et al.Experiment research on preferential flotation process for the lead-zinc ore from Yunnan[J].Multipurpose Utilization of Mineral Resources,2018(4):62-66.
15 雷阿丽,吴彩斌,江领培.某低品位伴生银铅锌多金属矿选矿工艺试验研究[J].黄金科学技术,2018,26(2):212-218.
LeiAli,WuCaibin,JiangLingpei.Experiment research on beneficiation process of a low grade polymetallic lead-zinc ore with associated silver[J].Gold Science and Technology,2018,26(2):212-218.
16 罗仙平,王金庆,曹志明,等.浮选粒度及浓度对铅锌硫化矿浮选分离的影响[J].稀有金属,2018,42(3):307-314.
LuoXianping,WangJinqing,CaoZhiming,et al.Flotation separation of lead-zinc sulfide ore with different flotation particle size and concentration[J].Chinese Joural of Rare Metals,2018,42(3):307-314.
17 于涛.一段闭路磨矿分级旋流器与分级机的工业实践[C]//全国矿山采选技术进展报告会.呼和浩特:全国冶金矿山信息网,2006.
YuTao.Industrial practice of classifying cyclones and classifiers for a closed-circuit grinding[C]//National Mining Technology Progress Report.Hohhot:National Metallurgical Mine Information Network,2016.
18 沈同喜,余新阳.江西某铅锌多金属硫化矿石选矿试验研究[J].有色金属科学与工程,2012,3(2):71-75.
ShenTongxi,YuXinyang.The processing experiment of a Pb-Zn multi-metal sulfide ore[J].Nonferrous Metals Science and Engineering,2012,3(2):71-75.
19 魏宗武,陈建华,艾光华,等.硫化铅锌矿无氰浮选工艺流程及技术进展[J].矿产保护与利用,2007(4):39-44.
WeiZongwu,ChenJianhua,AiGuanghua,et al.Development of cyanide-free flotation flowsheet and technology for lead and zinc sulfide ores[J].Conservation and Utilization of Mineral Resources,2007(4):39-44.
20 肖骏,陈代雄,杨建文,等.凡口铅锌矿铅锌硫混合精矿分离试验研究[J].有色金属科学与工程,2015,6(2):104-110.
XiaoJun,ChenDaixiong,YangJianwen,et al.Separation tests of the lead-zinc-sulfur mixed concentrate in Fankou lead and zinc mine[J].Nonferrous Metals Science and Engineering,2016,6(2):104-110.
21 余新阳,王浩林,王强强,等.江西某伴生银难选铅锌矿浮选分离[J].有色金属工程,2016,6(5):49-54.
YuXinyang,WangHaolin,WangQiangqiang,et al.Flotation separation of a lead-zinc ore with associated silver from Jiangxi[J].Nonferrous Metals Engineering,2016,6(5):49-54.
22 常富强,段德华,宋龑.生产中提高球磨机磨矿效率的方法[J].现代矿业,2011(3):81-84.
ChangFuqiang,DuanDehua,SongYan.Method for improving grinding efficiency of ball mill in production[J].Modern Mining,2011(3):81-84.
23 周贺鹏,雷梅芬,罗礼英,等.广西某铜铋硫化矿选矿新工艺研究[J].矿业研究与开发,2013,33(1):52-55.
ZhouHepeng,LeiMeifen,LuoLiying,et al.Study on the new benefication process of a copper bismuth sulphide ore from Guangxi[J].Mining Research and Development,2013,33(1):52-55.
24 贺国帅,陈代雄,杨建文,等.湖南鲁塘隐晶质石墨矿选矿试验研究[J].矿产保护与利用,2018(5):63-67.
HeGuoshuai,ChenDaixiong,YangJianwen,et al.Experimental study on the beneficiation of aphanitic graphite ore from Lutang in Hunan[J].Conservation and Utilization of Mineral Resources,2018(5):63-67.
[1] Pingtian MING,Fei LI,Zhaohua XIONG,Ziqiang CHEN,Shengping MA. Study on Optimization of Flotation Time and Magnification Coefficient of a Refractory Gold Ore Concentrator [J]. Gold Science and Technology, 2022, 30(4): 623-631.
[2] Fei LI,Ziqiang CHEN. Process Design Optimization and Application of a Dressing and Metallurgy Pilot Plant in Qinghai [J]. Gold Science and Technology, 2020, 28(1): 142-147.
[3] REN Qi,ZHANG Guocun,WANG Guangwei. Optimization and Practice on Floataion Reagent Dosing Point and Dosage in a Gold Mine of Qinghai Province [J]. Gold Science and Technology, 2017, 25(6): 68-74.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!