img

Wechat

Adv. Search

Gold Science and Technology ›› 2020, Vol. 28 ›› Issue (5): 712-726.doi: 10.11872/j.issn.1005-2518.2020.05.105

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Composition Typomorphic Characteristics of Pyrite and Its Genetic Implication for Gold Deposits in Tongdao County,Hunan Province

Hua GAO1(),Yuhua XIE1,Liang YANG1,Zhe ZHANG1,Xinxing KE1,Xiaomin LIU1,Jianbiao LUO2,3,Qi LIU2,3,Jishun LIU2,3,Zhilin WANG2,3,Hua KONG2,3()   

  1. 301.301 Brigade,Hunan Nuclear Industry Geological Bureau,Changsha 410114,Hunan,China
    2.Key Laboratory of Metallogenic Prediction of Nonferrous Metals,Ministry of Education,Central South University,Changsha 410083,Hunan,China
    3.School of Geoscience and Info-Physics,Central South University,Changsha 410083,Hunan,China
  • Received:2020-06-11 Revised:2020-08-18 Online:2020-10-31 Published:2020-11-05
  • Contact: Hua KONG E-mail:gh301@126.com;konghua2006@126.com

Abstract:

Tongdao county is located in southwest of Xuefeng arc structure belt,there are some small and medium-sized gold deposit such as Jinkeng deposit,Huanggou deposit and Chaxi deposit.Few research have done in this area,in order to discuss the genesis of gold deposit,this paper focuses on the genetic mineralogy study about pyrites of different occurrence.The macroscopic geological characteristics of the three deposits show that the wall rocks of the ore body are all low-grade metamorphic sandstone slate.Strong silicification alteration and fading alteration occurred in the surrounding rocks near ore-bearing quartz veins in Jinkeng mining area.The dip angle of quartz vein is steep in Huanggou mining area,and the tendency is southeast or northwest,the fracture filled with quartz vein is shear fracture.The ore bearing quartz veins in Chaxi mining area are mainly NW steeply dipping veins and their branch gently dipping veins.The gold orebodies are mainly quartz vein type or altered rock type.The ore contains pyrite,arsenopyrite and other sulfides.Generally,the ore vein with more pyrite content has a relatively high gold grade,suggesting that pyrite is the main gold-carrying mineral.Rock-mineral determination show that pyrite is mainly cubic and pentagonal dodecahedron and other semi automorphic granular in three gold deposit.MLA(mineral liberation analyzer) scanning results show that gold was produced in pyrite farcture or pyrite intergranular in Huanggou gold deposit.Major element results analyzed by EPMA show that the pyrites in general are rich in iron and deficient in sulfur,containing a small amount of arsenic.The δFe-δS diagram shows that all points from three deposit concentrate in a narrow range,which is consistent with metamorphic hydrothermal gold deposit.Trace elements results analyzed by LA-ICPMS show that average Co/Ni value for Jinkeng pyrite samples is less than 1,which implies the fluid are from metamorphic water mainly.There are two kinds of pyrites in Huangou deposit,one produced in fine quartz vein,the Co/Ni value is near 0,the other zonal pyrite produced in wall rocks near ore,the Co/Ni value of core and edge are quite different,which implies the zonal pyrites have multi-stage growth history.As-Co-Ni diagram show that pyrites from Jinkeng and Huanggou deposit are mainly metamorphic hydrothermal type,and the metallogenic temperature should be medium low temperature.Compared with that of Huanggou gold deposit,pyrites collected from Jinkeng deposit has higher trace element content(e.g.,Au,Ag,Cu,Pb and Zn),which suggests that the Jinkeng area has more better prospecting potential.According to less private mining,we infer the gold body are eroded slightly,there is still great prospecting in deep part of the deposit.

Key words: pyrite, composition typomorphism, gold deposit, genesis of deposit, Tongdao area, Hunan Province

CLC Number: 

  • P618.51

Fig.1

Geological sketch of Xuefeng arc structure belt[22]"

Fig.2

Geological map of Jinkeng-Huanggou mining area[23]"

Fig.3

Geological map of Chaxi mining area[24]"

Table 1

Sample collection information of rock and ore from gold deposit"

矿床名称采样位置样品编号样品简单描述矿石矿物及其组合
金坑地表露头SIF硅化带24-11含硫化物石英脉毒砂、黄铁矿
地表露头V1号脉24-12含硫化物石英脉毒砂、黄铁矿、黄铜矿
ZK601中H38-718-11硅化石英砂岩黄铁矿、毒砂
黄垢Ⅰ号矿体25-02含薄膜状黄铁矿脉石英脉黄铁矿
Ⅰ号矿体25-04含硫化物细脉围岩金红石、黄铁矿、闪锌矿
Ⅱ号矿体25-16蚀变岩黄铁矿
茶溪坑道内NW向矿体26-02含矿石英脉黄铁矿、赤铁矿
坑道内SN向矿体26-06含矿石英脉黝铜矿、黄铜矿、自然银

Fig.4

Field characteristics of ore-bearing quartz veins in the gold deposit in Tongdao area"

Fig.5

Ore micro-fabric in Jinkeng deposit"

Fig.6

Ore micro-fabric in Huanggou deposit"

Fig.7

Ore micro-fabric in Chaxi deposit"

Fig.8

Occurrence of gold in Huanggou deposit"

Table 2

Analysis results of pyrite by EPMA(%)"

样号类别产状自形程度AsSFeS/Fe
24-11-17PyJ石英大脉中半自形0.2654.3347.372.00
24-11-19PyJ石英大脉中半自形0.3554.3247.262.01
24-12-10PyJ石英大脉中半自形0.2754.3047.302.00
25-02-02PyH-1细脉中他形0.2354.0147.182.00
25-02-03PyH-1细脉中他形0.1853.8946.882.01
25-02-04PyH-1细脉中他形0.2253.7646.632.01
25-02-05PyH-1细脉中他形0.1753.9046.902.01
25-02-06PyH-1细脉中他形0.2353.9147.591.98
25-04-01PyH-3细脉中他形0.2053.7747.341.98
25-04-04PyH-3细脉中他形0.6153.2246.811.99
25-04-05PyH-3细脉中他形0.1853.8247.611.97
25-04-06PyH-3细脉中他形0.3452.1146.761.95
25-04-09PyH-3细脉中他形0.3653.9747.401.99
25-04-10PyH-3细脉中他形0.1853.9247.291.99
25-04-11PyH-3细脉中他形0.2253.4946.931.99
25-16-01PyH-4环带自形(核)0.3653.4547.611.96
25-16-02PyH-4环带自形0.9253.7147.331.98
25-16-07PyH-4环带自形(核)0.3553.3347.741.95
25-16-08PyH-4环带自形0.2253.7447.571.97
25-16-09PyH-4环带自形0.4053.5647.591.97
25-16-10PyH-4环带自形(边)0.2053.8947.811.97
25-16-11PyH-4环带自形(核)0.6151.8246.311.95
25-16-12PyH-4环带自形0.2053.8947.301.99
25-16-16PyH-4环带自形0.1953.9147.651.98
25-16-19PyH-4环带自形(核)0.3153.5047.771.96
25-16-20PyH-4环带自形0.2253.6347.811.96
25-16-21PyH-4环带自形0.1853.9447.801.97
25-16-22PyH-4环带自形0.4353.5546.911.99
25-16-23PyH-4环带自形(边)0.2753.9347.741.97
25-16-27PyH-4环带自形0.4453.6047.421.97
25-16-28PyH-4环带自形0.1754.2747.432.00
25-16-29PyH-4环带自形(边)0.2054.3647.212.01
25-16-24PyH-5细粒黄铁矿他形0.2154.3647.092.02
25-16-25PyH-5细粒黄铁矿半自形2.8352.3546.651.96
26-02-03PyC石英大脉中他形1.8852.1846.461.96
26-02-04PyC石英大脉中他形0.8953.846.902.00
26-02-05PyC石英大脉中他形2.5252.1447.061.93

Table 3

Trace element analysis results of pyrite by LA-ICPMS"

类别样号FeAsAuCoNiCuZnPbAgTiCrCo/Ni
PyJ24-11-01L46.45646.132.212.337.0719.2830.152.157.704.610.820.33
24-11-02L46.391 431.283.634.9811.70139.1732.731.3610.493.770.770.43
24-11-03L46.371 828.242.5722.9117.0520.3631.112.523.683.500.251.34
24-11-04L46.43978.372.5618.1118.3027.9215.935.2118.903.300.470.99
24-11-05L46.351 062.6814.0730.6317.8224.9413.815.3428.893.170.771.72
PyH-125-02-01L46.4441.850.021.734.145.460.000.000.003.412.040.42
25-02-02L46.498.890.010.9911.6838.562.150.010.293.090.780.08
25-02-03L46.4962.290.001.2410.256.160.000.000.482.665.330.12
25-02-04L46.4819.530.012.9919.3711.873.100.000.244.180.260.15
25-02-05L46.4827.910.020.160.9288.751.930.000.053.780.800.17
PyH-225-04-01L46.4910.410.00126.04116.601.260.000.700.003.480.221.08
25-04-07L46.5114.080.005.3521.690.350.000.120.013.600.380.25
25-04-08L46.42122.170.01782.49204.351.086.991.030.033.220.163.83
25-04-09L46.493.350.0173.3073.120.576.930.440.032.910.161.00
25-04-10L46.527.140.009.7628.380.547.670.220.013.020.260.34
PyH-325-04-02L46.41801.530.15323.7594.965.322.162.410.163.840.143.41
25-04-03L46.482.840.001.166.893.062.810.000.013.670.890.17
25-04-04L46.475.900.0316.5935.34158.201.170.080.203.140.760.47
25-04-05L46.486.790.0052.09118.15108.532.140.000.593.820.590.44
25-04-06L46.5010.420.003.8711.6522.233.890.000.173.740.680.33
PyH-425-16-01L45.872 658.040.044.5983.002.146.070.020.0710.744.180.06
25-16-02L46.5066.780.003.1669.480.770.000.000.032.640.500.05
25-16-03L46.5321.090.000.325.352.510.000.010.012.710.080.06
25-16-05L46.401 201.340.005.2590.481.854.540.020.003.450.870.06
25-16-06L46.233 594.840.000.328.543.800.000.010.043.381.390.04
25-16-07L46.5117.910.000.061.460.217.710.000.003.730.140.04
PyH-525-16-04L46.431 149.250.015.2285.031.370.000.010.003.760.170.06
25-16-08L45.2966.900.002.1655.1041.180.000.030.0713.876.920.04
25-16-09L46.4770.510.012.3063.4351.670.000.020.023.973.560.04
25-16-10L46.46286.990.002.0261.754.754.750.000.003.650.290.03

Fig.9

δFe-δS diagram(a)and the(Fe+S)-As diagram(b) for pyrite[20]"

Fig.10

As-S(a)and Co-Ni(b) correlation diagram for pyrite"

Fig.11

As-Co-Ni diagram for pyrite[17]"

1 王成辉,徐珏,黄凡,等.中国金矿资源特征及成矿规律概要[J].地质学报,2014,88(12):2315-2325.
Wang Chenghui,Xu Jue,Huang Fan,et al.Resources characteristics and outline of regional metallogeny of gold deposits in China[J].Acta Geologica Sinica,2014,88(12):2315-2325.
2 刘清泉.湘东北地区正冲金矿床地质地球化学特征与矿床成因[R].长沙:中南大学,2018.
Liu Qingquan.Geological and geochemical characteristics and ore genesis of the Zhengchong gold deposit in the northeastern Hunan Province,China[R].Changsha:Central South University,2018.
3 何谷先.湘西雪峰山地区金矿床地质特征及其分布规律[J].黄金,1989,10(5):2-6.
He Guxian.The geological features and the regularity of distribution of gold deposits in the Zone of Xuefeng Mountain,West Hunan[J].Gold,1985,10(5):2-6.
4 罗献林.湖南金矿床的成矿特征与成因类型[J].桂林冶金地质学院学报,1991,11(1):23-33.
Luo Xianlin.Main characteristics and genetic types of gold ore deposits in Hunan[J].Journal of Guilin College of Geology,1991,11(1):23-33.
5 彭建堂,胡阿香,肖静芸,等.湖南变质岩地体中两类金矿的成矿作用研究[C]//第八届全国成矿理论与找矿方法学术讨论会论文摘要文集.北京:中国矿物岩石地球化学学会矿床地球化学专业委员会,中国地质学会矿床地质专业委员会,矿床地球化学国家重点实验室,2017:146.
Peng Jiantang,Hu Axiang,Xiao Jingyun,et al.Study on mineralization of two types of gold deposits in metamorphic terranes in Hunan Province[C]// Abstracts of the 8th National Symposium on Metallogenic Theory and Prospecting Methods.Professional Committee of Mineral Deposit Geochemistry of Chinese Society for Mineralogy Petrology and Geochemistry,Professional Committee of Mineral Deposit Geology of Geological Society of China,State Key Laboratory of Ore Deposit Geochemistry,2017:146.
6 苏康明,曾勇.雪峰弧形构造带金矿类型及分布特征[J].黄金,2007,28(4):19-23.
Su Kangming,Zeng Yong.Gold deposit type and its distribution characteristic in Snowberg arc structure belt[J].Gold,2007,28(4):19-23.
7 张景荣,罗献林.论华南地区内生金矿床的形成时代[J].桂林冶金地质学院学报,1989,9(4):369-379.
Zhang Jingrong,Luo Xianlin.Metallogenic epoches of endogenic gold deposits in South China[J].Journal of Guilin College of Geology,1989,9(4):369-379.
8 刘继顺.韧性剪切带中金成矿研究的若干问题[J].地质论评,1996,42(2):123-128.
Liu Jishun.Some problems in the study of gold mineralization in ductile shear zones[J].Geological Review,1996,42(2):123-128.
9 彭建堂,戴塔根.雪峰地区金矿成矿时代问题的探讨[J].地质与勘探,1998,34(4):39-43.
Peng Jiantang,Dai Tagen.On the mineralization epoch of the Xuefeng gold metallogenic province[J].Geology and Prospecting,1998,34(4):39-43.
10 罗献林.论湖南前寒武系金矿床的成矿物质来源[J].桂林冶金地质学院学报,1990,10(1):13-26.
Luo Xianlin.On the source of ore-forming substances of precambrian gold deposits in Hunan province[J].Journal of Guilin College of Geology,1990,10(1):13-26.
11 毛景文,李红艳.江南古陆某些金矿床成因讨论[J].地球化学,1997,26(5):71-81.
Mao Jingwen,Li Hongyan.Research on genesis of the gold deposits in the Jiangnan terrain[J].Geochimica,1997,26(5):71-81.
12 鲍振襄,万容江,鲍珏敏.湘西钨锑金矿床成矿系列及其稳定同位素研究[J].北京地质,1999(1):11-17.
Bao Zhenxiang,Wan Rongjiang,Bao Juemin.The metallogenetic series of the W-Sb-Au deposits and its stable isotopic research in Western Hunan Province[J].Beijing Geology,1999(1):11-17.
13 陈柏林.论中国金矿床成矿时代特点[J].地质地球化学,2002,30(2):66-73.
Chen Bolin.A discussion on the metallogenic epoch of gold deposits in China[J].Geology-Geochemistry,2002,30(2):66-73.
14 彭渤,Frei Robert,涂湘林.湘西沃溪W-Sb-Au矿床白钨矿Nd-Sr-Pb同位素对成矿流体的示踪[J].地质学报,2006,80(4):561-570.
Peng Bo,Frei Robert,Tu Xianglin.Nd-Sr-Pb isotopic geochemistry of Scheelite from the Woxi W-Sb-Au deposit,Western Hunan:Implications for sources and evolution of ore-forming fluids[J].Acta Geologica Sinica,2006,80(4):561-570.
15 刘晓敏,杨亮.湖南省通道地区金、铜多金属矿成矿条件分析及找矿前景研究[J].世界有色金属,2017(10):16-17.
Liu Xiaomin,Yang Liang.Hunan Tongdao region gold and copper polymetallic metallogenic conditions analysis and prospecting future research[J].World Nonferrous Me-tals,2017(10):16-17.
16 徐国风,邵洁涟.黄铁矿的标型特征及其实际意义[J].地质论评,1980,26(6):541-546.
Xu Guofeng,Shao Jielian.Typomorphic characteristics of pyrite and its practical significance[J].Geological Review,1980,26(6):541-546.
17 严育通,李胜荣,贾宝剑,等.中国不同成因类型金矿床的黄铁矿成分标型特征及统计分析[J].地学前缘,2012,19(4):214-226.
Yan Yutong,Li Shengrong,Jia Baojian,et al.Composition typomorphic characteristics and statistic analysis of pyrite in gold deposits of different genetic types[J].Earth Science Frontiers,2012,19(4):214-226.
18 庞保成,杨东生,周志,等.湖南龙山金锑矿黄铁矿微量元素特征及其对成矿过程的指示[J].现代地质,2011,25(5):832-845.
Pang Baocheng,Yang Dongsheng,Zhou Zhi,et al.Trace elements in pyrites and their implication for hydrothermal ore-forming process in Longshan gold-antimony deposits,Hunan,China[J].Geoscience,2011,25(5):832-845.
19 刘纯波,张术根,黄超文,等.云南东川播卡金矿床黄铁矿成因矿物学特征研究[J].黄金科学技术,2016,24(5):40-47.
Liu Chunbo,Zhang Shugen,Huang Chaowen,et al.Genetic mineralogical characteristics of pyrite in Boka gold deposit from Dongchuan Area,Yunnan Province[J].Gold Science and Technology,2016,24(5):40-47.
20 李洪梁,李光明.不同类型热液金矿床主成矿期黄铁矿成分标型特征[J].地学前缘,2019,26(3):202-210.
Li Hongliang,Li Guangming.Compositional characteristics of pyrite ore formed in the main metallogenic period of various types of hydrothermal gold deposits[J].Earth Science Frontiers,2019,26(3):202-210.
21 贾宝华.湖南雪峰隆起区构造变形研究[J].中国区域地质,1994(1):65-71.
Jia Baohua.Tectonic deformation of the Xuefeng uplift area in Hunan[J].Regional Geology of China,1994(1):65-71.
22 杨冲.雪峰弧形构造带金(锑)控矿构造分析及找矿方向研究[D].湘潭:湖南科技大学,2012.
Yang Chong.Analysis on Ore-controlling Structure and Research on Prospecting Direction of Gold-antimony in Xuefeng Arc Structure Belt[D].Xiangtan:Hunan University of Science and Technology,2012.
23 熊建忠.黄垢野外总结[R].长沙:湖南核工业地质局三〇一大队,2017.
Xiong Jianzhong.Field investigation summary report of Huanggou gold deposit[R].Changsha:301 Brigade,Hunan Nuclear Industry Geological Bureau,2017.
24 伍式崇.茶溪金矿床详查报告[R] .株洲:湖南地质矿产勘查开发局四一六队,2014.
Wu Shichong.Detailed exploration report for Chaxi gold deposit[R].Zhuzhou:Team 416 of Hunan Geological Exploration Bureau,2014.
25 曹新志,范永香,王燕.湖南漠滨金矿床明金特征及其形成机理探讨[J].地质科技情报,1991,10(4):59-62.
Cao Xinzhi,Fan Yongxiang,Wang Yan.Research of the characteristic and genetic mechanism of the visible gold from Mobin gold deposit,Hunan Province[J].Geological Science and Technology Information,1991,10(4):59-62.
26 Chen L,Liu Y S,Hu Z C,et al.Accurate determinations of fifty-four major and trace elements in carbonate by LA-ICP-MS using normalization strategy of bulk components as 100%[J].Chemical Geology,2011,284(3/4):283-295.
27 Liu Y S,Hu Z C,Gao S,et al.In situ analysis of major and trace elements of anhydrous minerals by LA-ICP-MS without applying an internal standard[J].Chemical Geology,2008,257(1/2):34-43.
28 Liu Y S,Gao S,Hu Z C,et al.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of Petrology,2010,51:537-571.
29 周学武,邵洁涟,边秋娟.四川松潘东北寨金矿黄铁矿标型特征研究[J].地球科学——中国地质大学学报,1994,19(1):52-59.
Zhou Xuewu,Shao Jielian,Bian Qiujuan.Study on typomorphic characteristics of pyrite from Dongbeizhai gold deposit,Sichuan Province[J].Earth Science—Journal of China University of Geosciences,1994,19(1):52-59.
30 邵靖邦,王濮,陈代章.湘西沃溪金锑钨矿床黄铁矿矿物学研究[J].湖南地质,1996,15(3):151-158.
Shao Jingbang,Wang Pu,Chen Daizhang.Mineralogical studies on pyrites in Woxi Au-Sb-W deposit,Western Hunan[J].Hunan Geology,1996,15(3):151-158.
31 彭南海.湖南沅陵沃溪金—锑—钨矿床地质地球化学特征及成因研究[D].长沙:中南大学,2017.
Peng Nanhai.Study on Geological and Geochemical Characteristics and Genesis of Woxi Au-Sb-W Deposit,Yuanling,Hunan Province[D].Changsha:Central South University,2017.
32 赵振华,赵惠兰,杨蔚华,等.碓边和武山寒武—奥陶系界线剖面微量元素地球化学特征[J].地球化学,1987,16(2):99-112.
Zhao Zhenhua,Zhao Huilan,Yang Weihua,et al.Trace element geochemical characteristics of cambrian-ordovician boundary strata in the Duibian and Wushan profiles[J].Geochimica,1987,16(2):99-112.
33 赵晓燕,杨竹森,张雄,等.邦布造山型金矿床黄铁矿原位微量元素特征及其成矿意义[J].地学前缘,2019,44(6):2052-2063.
Zhao Xiaoyan,Yang Zhusen,Zhang Xiong,et al.In situ trace element analysis of pyrite from Bangbu orogenic gold deposit and its metallogenic significance[J].Earth Science,2019,44(6):2052-2063.
34 牛贺才,马东升.湘西层控金矿床成因机制的研究[J].矿床地质,1992,11(1):65-75.
Niu Hecai,Ma Dongsheng.Metallogenesis of stratabound gold deposits in West Hunan[J].Mineral deposits,1992,11(1):65-75.
[1] Wenxuan HU, Mingchun SONG, Jie LI, Leilei DONG, Runqian ZHAO, Liangliang ZHANG, Jian LI, Tianhui BAI. Sources of Ore-forming Materials in the Jiaodong Gold Deposits:Constraints on Gold Content from Geological Units Related to Gold Mineralization [J]. Gold Science and Technology, 2024, 32(5): 781-797.
[2] Xiaoping ZHOU, Mingchun SONG, Xiangdong LIU, Chunming YAN, Zhaojun HU, Haigang SU, Bingqian HU, Yikang ZHOU. Formation Age,Petrogenesis,and Implications for Gold Mineralization of Giant Porphyritic Granite in the Sanshandao Gold Deposit in Jiaodong [J]. Gold Science and Technology, 2024, 32(5): 813-829.
[3] Zikun YUAN, Yongjun SHAO, Qingquan LIU, Yuce ZHANG, Zhilin WANG. Genesis of Jiangdong Gold Deposit in Wangu Gold Field,Northeast Hunan:Constraints from Fluid Inclusions and H-O Isotope [J]. Gold Science and Technology, 2024, 32(4): 559-578.
[4] Yan YANG, Zengbao HUANG, Xiaogang GUO, Yanlong XU, Hua YAN. Zircon U-Pb Age and Geochemical Characteristics of Granodiorite Porphyry Veins in Yushugoushan Gold Deposit,Northern Qilian Mountain,and Its Geological Significance [J]. Gold Science and Technology, 2024, 32(3): 387-399.
[5] Li SU, Haijun ZHU, Shoujiang GU, Xingke YANG, Yichen ZHAO, Xueping SUN, Hujun HE, Ke HAN, Yuyu ZHANG, Jiang TAN, Yuanlong XIE, Long ZHANG, Libo GAO. Geological and Geochemistry Characteristics and Genesis Analysis of Gold Deposits in Xihuashan Area,Haiyuan,Ningxia [J]. Gold Science and Technology, 2024, 32(2): 191-206.
[6] Bing YU, Zhengjiang DING, Weijun CHEN, Xiao LI, Caijie LIU, Jianling XUE, Qingdong ZENG, Hongrui FAN, Jinjian WU, Qibin ZHANG. Thermoelectric Characteristics of Pyrite from the Xiling Gold Deposit in Jiaodong Peninsula and Its Implications for Deep Prospecting [J]. Gold Science and Technology, 2024, 32(2): 207-219.
[7] Yuanlin LOU, Jianli QIAN, Zhiping ZHU, Yong BA, Minglong YANG, Tao YANG. Application of Integrated Geophysical,Geochemical and Remote Sensing Prospecting Methods in Lajiu Area,Longzi County,Tibet [J]. Gold Science and Technology, 2024, 32(2): 241-257.
[8] Yong ZHANG, Shuiping LI, Peng JING, Pan FENG. Geochemical Characteristics and Exploration Model of the Jiuzhanggou Gold Deposit,Songxian County,Henan Province [J]. Gold Science and Technology, 2024, 32(2): 258-269.
[9] Xingchun WANG, Haicheng QIU, Jianping LI, Qingquan ZHI, Hua LI, Junjie WU, Xiaohong DENG, Qiong WU. Peripheral Electrical Characteristics and Its Prospecting Significance of Wulong Gold Deposit in Eastern Liaoning Peninsula [J]. Gold Science and Technology, 2024, 32(1): 1-12.
[10] Lei SHI, Xirong WANG, Xiaofeng NING, Fengbin LU, Yanbo XU, Yanan LI. Occurrence State and Enrichment Mechanism of Gold in Nanlü-Xinmu Gold Deposit,Shandong Province [J]. Gold Science and Technology, 2024, 32(1): 41-54.
[11] Gaorui SONG, Xinwei ZHAI, Erteng WANG, Lei WU, Wanfeng CHEN, Feifei ZHENG, Haidong WANG, Jinrong WANG. Properties of Ore-forming Fluids and Genesis of the Huaniushan Gold Deposit in Gansu Province [J]. Gold Science and Technology, 2023, 31(6): 873-887.
[12] Wenfa SHAN, Xiancheng MAO, Zhankun LIU, Hao DENG, Jin CHEN, Wei ZHANG, Haizheng WANG, Xin YANG. Numerical Simulation of Metallogenic Processes of Dayingezhuang Gold Deposit in Jiaodong Peninsula and Its Prospecting Significance [J]. Gold Science and Technology, 2023, 31(5): 707-720.
[13] Fangying XU, Yanhong ZOU, Zhuowei YI, Fuqiang YANG, Xiancheng MAO. ADASYN-CatBoost Method for Intelligent Identification of Logging Lithology Considering Unbalanced Data:A Case Study of Zhaoxian Gold Deposit in Northwestern Jiaodong Peninsula [J]. Gold Science and Technology, 2023, 31(5): 721-735.
[14] Juntao NING, Baoliang HUANG, Guojun DONG, Yueqiang ZHOU, Zhuolong GAO, Bo KANG. Characteristics of Cobalt-bearing Minerals in Hydrothermal Cobalt Deposits in Northeastern Hunan Province and Their Implication for Mineralization [J]. Gold Science and Technology, 2023, 31(4): 531-545.
[15] Zhongping FAN, Wang ZHANG, Wei WANG. Study on Metallogenic Regularity and Prospecting Prediction of Shanyang-Shangnan Gold Deposits in Shaanxi Province [J]. Gold Science and Technology, 2023, 31(4): 560-579.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!