img

Wechat

Adv. Search

Gold Science and Technology ›› 2021, Vol. 29 ›› Issue (4): 535-544.doi: 10.11872/j.issn.1005-2518.2021.04.150

• Mining Technology and Mine Management • Previous Articles     Next Articles

The Variation Law of In-situ Stress and Rock Mechanical Parameters with Buried Depth in Coastal Mining Area and Their Relationship

Xi WANG1(),Chunde MA2,Xingquan LIU1,Mingwei JIANG1,Yuyun FAN1   

  1. 1.Deep Well Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Laizhou 261400,Shandong,China
    2.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China
  • Received:2020-08-13 Revised:2021-05-25 Online:2021-08-31 Published:2021-10-08

Abstract:

The Xiling mining area in Sanshandao gold mine is the first coastal metal mining area in China.Therefore,it is of great significance for coastal rock engineering excavation design and disaster control to study the effect of the buried depth on in-situ stress,rock mechanical properties and their relationship.For this purpose,the standard rock specimen at 5 different buried depths ranging from 300 m to 1 900 m were taken from the three geological drilling in this mining area,namely ZK88-21,ZK88-14 and ZK94-2.With the aid of MTS815,the mechanical parameters and acoustic emission Kaiser point in different directions of rock at different buried depths were tested,and the mechanical properties and in-situ stress of rocks were further obtained.On this basis,the in-situ stress,rock mechanics parameters and their interrelationships at different buried depths were analyzed.The results show that the mechanics parameters,self-weight stress,vertical stress,maximum horizontal stress and minimum horizontal stress have a logarithmic relationship with the buried depth,and the increase amplitude of vertical stress is gradually smaller than that of the self-weight stress with the increase of the buried depth.Similarly,the rock mechanics parameters are roughly logarithmic to the in-situ stress.Among them,the effect of the maximum horizontal stress on the rock mechanical parameters is greater than that of the minimum principal stress.In addition,the effect of buried depth on the tensile strength is greater than its effect on the compressive strength.

Key words: coastal mining area, buried depth, geological drilling, in-situ stress, rock mechanical parameters, Xiling mining area

CLC Number: 

  • TU452

Fig.1

Engineering geological phenomenon of coastal mining"

Fig.2

Typical geological drilling information and rock specimen acquisition process"

Fig.3

Acoustic emission signal acquisition and specimen loading"

Fig.4

Judgement methods of acoustic emission Kaiser effect point for different drill core specimens"

Table 1

In-situ stress at different buried depth test points of each borehole"

钻孔编号H/mσv/MPaσ/MPa水平方向Kaiser效应突变点应力值/MPaσH/MPaσh/MPa
0°(σ45°(σ90°(σ
ZK94-2钻孔3007.998.1010.5913.4620.6221.0610.15
60016.5516.212.8615.4728.1029.6011.36
90024.9124.313.9814.5931.1134.2412.85
1 20033.2332.417.1922.0135.0335.9316.29
1 50039.3439.2118.0125.2338.6539.1917.47
1 60043.5043.219.7730.3244.2144.3219.66
ZK88-21钻孔3007.978.19.8013.1819.7720.039.55
60017.0516.2314.1216.4128.4329.9214.26
90023.2024.3516.1415.4032.0635.9014.95
1 20033.4932.4717.9622.4634.9735.8617.07
1 50040.7040.5217.4727.2240.4340.5617.34
1 80044.9042.9417.5229.3142.6242.7017.44
1 90046.7043.0117.6129.7242.9343.9317.61
ZK88-14钻孔3007.658.1011.8315.5920.7320.7811.78
60015.6516.2011.7811.8233.4526.4112.62
90024.7124.3015.7514.9836.8036.3012.31
1 20032.1232.4020.0526.2043.5436.8018.79
1 50041.8240.5020.7422.6244.8942.6317.01

Fig.5

Relationship between vertical stress and buried depth"

Fig.6

Relationship between maximum horizontal principal stress and buried depth"

Fig.7

Relationship between minimum horizontal principal stress and buried depth"

Fig.8

Uniaxial compression stress-strain curves of cores at different buried depths"

Fig.9

Variation law of rock elastic modulus(a) and compressive strength(b) with buried depths"

Table 2

Mechanical parameters of cores at different buried depths"

钻孔编号h/m样品编号弹性模量E/GPa抗压强度σc/MPa抗拉强度σb/MPa钻孔编号h/m样品编号弹性模量E/GPa抗压强度σc/MPa抗拉强度σb/MPa
ZK88-14300300-135.5145.38.2ZK94-21 5001500-137.2190.613.7
300-231.3143.27.31500-239.3193.515.1
300-329.4138.66.51500-341.2204.116.2
600600-131.0147.89.21 6001600-141.3207.315.6
600-234.2152.99.71600-239.0195.815.9
600-337.8163.28.81600-347.5210.617.8
900900-132.0107.69.2ZK88-21300300-126.2112.35.4
900-237.2117.39.8300-229.7115.46.7
900-338.5120.611.3300-331.2120.38.5
1 2001200-140.0139.713.2600600-135.8146.55.7
1200-243.4145.614.7600-227.8142.15.8
1200-332.6130.511.7600-339.7157.26.3
1 5001500-140.1143.614.3900900-131.2155.75.4
1500-238.1140.212.2900-235.7162.86.9
1500-341.3150.315.3900-340.2171.98.1
ZK94-2300300-127.077.35.91 2001200-132.2206.87.3
300-231.779.36.81200-236.8198.85.1
300-336.386.67.51200-341.7221.47.6
600600-130.2143.28.61 5001500-132.8213.48.5
600-235.3152.410.11500-243.5238.99.3
600-340.2163.29.81500-336.1243.212.4
900900-139.1136.510.31 8001800-144.2261.213.4
900-232.4125.69.21800-235.2242.79.1
900-342.3144.310.11800-345.1271.215.2
1 2001200-132.2168.111.61 9001900-142.2287.311.2
1200-238.6190.312.71900-245.4264.79.4
1200-343.2201.614.21900-335.5252.38.8

Fig.10

Tensile stress-strain curves of cores at different buried depths"

Fig.11

Tensile strength curve of cores at different buried depths"

Fig.12

Relationship among in-situ stress and rock mechanics parameters"

Baptista R,Infante V,Branco C M,2008.Study of the fatigue behavior in welded joints of stainless steels treated by weld toe grinding and subjected to salt water corrosion[J].International Journal of Fatigue,30(3):453-462.
Bi Yewu,Pu Wenlong,2014.Large deformation mechanism and control countermeasure research of deep high stress roadway[J].Journal of Liaoning Technical University(Natural Science),33(10):1321-1325.
Jiang Chenguang,Jiang Zubin,Liu Hua,al et,2004.Study on the relationship between granite rock mechanical parameters and rock depth[J].Stone,(7):4-6.
Jing Feng,Sheng Qian,Yu Meiwan,2010.The change rule of the geostress and the elastic modulus of rock with depth and their mutual impact[C]//Proceedings of the 11th National Conference on Rock Mechanics and Engineering.Beijing:Chinese Society of Rock Mechanics and Engineering:69-74.
Li Guangyi,Bai Shiwei,1979.In-situ study on stress in rock mass[J].Rock and Soil Mechanics,(1):80-94.
Li Xibing,Huang Linqi,Zhou Jian,al et,2019.Review and prospect of hard rock mine mining technology[J].The Chinese Journal of Nonferrous Metals,29(9):1828-1847.
Li Xibing,Li Diyuan,Guo Lei,al et,2007.Study on mechanical response of highly-stressed pillars in deep mining under dynamic disturbance[J].Chinese Journal of Rock Mechanics and Engineering,26(5):922-928.
Lin Bin,Xu Dong,2017.Study on the variation law of deep rock mechanics parameters with the occurrence depth[J].Journal of Anhui University of Science and Technology (Natural Science Edition),37(6):56-63.
Luo Chaowen,Li Haibo,Liu Yaqun,2010.Study of distributing characteristics of stress in surrounding rock masses and in-situ stress measurement for deeply buried tunnels[J].Chinese Journal of Rock Mechanics and Engineering,29(7):1418-1423.
Ma F S,Yang Y S,Yuan R M,al et,2007.Study of shallow groundwater quality evolution under saline intrusion with environmental isotopes and geochemistry[J].Environmental Geology,51(1):1009-1017.
Man Ke,2011.Influence of occurrence depth on dynamic fracture toughness of rock[J].Metal Mine,(3):19-21.
Man Ke,Zhou Hongwei,2010.Research on dynamic fracture toughness and tensile strength of rock at different depths[J].Chinese Journal of Rock Mechanics and Engineering,29(8):1657-1663.
Ministry of Housing and Urban-Rural Development of the People’s Republic of China,2013.Engineering Rock Mass Test Method Standard:[S].Beijing:China Planning Press.
Peng K,Li X B,Wang Z W,2015.Hydrochemical characteristics of groundwater movement and evolution in the Xinli deposit of the Sanshandao gold mine using FCM and PCA methods[J].Environmental Earth Sciences,73(12):7873-7888.
Peng K,Liu Z,Zou Q L,al et,2019.Static and dynamic mechanical properties of granite from various burial depths[J].Rock Mechanics and Rock Engineering,52(10):3545-3566.
Wu Yanqing,2000.Research on the law of rock porosity varying with formation depth[J].Journal of Xi’an University of Technology,16(1):69-73.
Yan Peng,Chen Tuo,Lu Wenbo,al et,2018.A review of dynamic mechanism and controlling of rockburst[J]. Engineering Journal of Wuhan University,51(1):1-14.
Zhou Hongwei,Xie Heping,Zuo Jianping,al et,2010.Experimental research on the influence of occurrence depth on rock mechanical parameters[J].Chinese Science Bulletin,55(34):3276-3284.
Zuo Jianping,Chai Nengbin,Zhou Hongwei,2011.Study on the effect of buried depth on failure and energy characteristics of the basalt[J].Chinese Journal of Underground Space and Engineering,7(6):1174-1180.
毕业武,蒲文龙,2014.深部高应力巷道大变形机理与控制对策[J].辽宁工程技术大学学报(自然科学版),33(10):1321-1325.
姜晨光,姜祖彬,刘华,等,2004.花岗岩岩石力学参数与岩体赋存深度关系的研究[J].石材,(7):4-6.
景锋,盛谦,余美万,2010.地应力与岩石弹性模量随埋深变化及相互影响[C]//第十一次全国岩石力学与工程学术大会论文集.北京:中国岩石力学与工程学会:69-74.
李光煜,白世伟,1979.岩体应力的现场研究[J].岩土力学,(1):80-94.
李夕兵,黄麟淇,周健,等,2019.硬岩矿山开采技术回顾与展望[J].中国有色金属学报,29(9):1828-1847.
李夕兵,李地元,郭雷,等,2007.动力扰动下深部高应力矿柱力学响应研究[J].岩石力学与工程学报,26(5):922-928.
林斌,徐冬,2017.深部岩石力学参数随赋存深度变化规律研究[J].安徽理工大学学报(自然科学版),37(6):56-63.
罗超文,李海波,刘亚群,2010.深埋巷道地应力测量及围岩应力分布特征研究[J].岩石力学与工程学报,29(7):1418-1423.
满轲,2011.赋存深度对岩石动态断裂韧性的影响[J].金属矿山,(3):19-21.
满轲,周宏伟,2010.不同赋存深度岩石的动态断裂韧性与拉伸强度研究[J].岩石力学与工程学报,29(8):1657-1663.
仵彦卿,2000.岩石孔隙率随地层深度变化规律研究[J].西安理工大学学报,16(1):69-73.
严鹏,陈拓,卢文波,等,2018.岩爆动力学机理及其控制研究进展[J].武汉大学学报(工学版),51(1):1-14.
中华人民共和国住房和城乡建设部,2013.工程岩体试验方法标准:[S].北京: 中国计划出版社.
周宏伟,谢和平,左建平,等,2010.赋存深度对岩石力学参数影响的实验研究[J].科学通报,55(34):3276-3284.
左建平,柴能斌,周宏伟,2011.赋存深度对玄武岩变形破坏及能量特征的影响研究[J].地下空间与工程学报,7(6):1174-1180.
[1] Xingyu FAN, Xuelin WANG. Research on Intelligent Prediction of EDZ Around Deep Tunnels Based on Improved XGBoost Algorithm [J]. Gold Science and Technology, 2024, 32(1): 109-122.
[2] Guang LI,Fengshan MA,Jie GUO,Long ZOU,Yongyuan KOU. Study on Ground Stress Characteristics and Its Influence on Roadway De-formation Failure in Jinchuan No.2 Mining Area [J]. Gold Science and Technology, 2021, 29(6): 817-825.
[3] Peng JIN,Kewei LIU,Xudong LI,Jiacai YANG. Numerical Simulation Study of Crack Propagation in Deep Rock Mass Under Water-coupling Blasting [J]. Gold Science and Technology, 2021, 29(1): 108-119.
[4] Chunde MA, Zelin LIU, Weibin XIE, Xin’ao WEI, Xinhao ZHAO, Shan LONG. Comparative Study of Stress Relief Method and Acoustic Emission Method in In-situ Stress Measurement in Deep Area of Xincheng Gold Mine [J]. Gold Science and Technology, 2020, 28(3): 401-410.
[5] SI Rongjun,LI Xinglong,XIANG Zhonglin,GAN Yanjing,LIU Bangjun. The Depth of Orebodies Buried Estimation and Significance of Gold Minera-lization Prediction Target Around Tongshi Area,Western Shandong Province [J]. Gold Science and Technology, 2015, 23(3): 24-29.
[6] TIE Zhu,CHAO Baoleng,JI Zhu. In-situ Stress Measurement and Analysis of Tugurige Gold Deposit [J]. Gold Science and Technology, 2014, 22(6): 73-76.
[7] ZHANG Xiong,LIU Baolin,WANG Zhiyong. Technical Performance and Application of SQ114/8  Hydraulic Power Tongs [J]. Gold Science and Technology, 2014, 22(3): 90-93.
[8] LIU Bei,LI Guomin,XIAO Lihui. The Application of PQ Drilling Tools for Geological Core Drilling in Zhaishang Mining Area [J]. Gold Science and Technology, 2012, 20(5): 63-66.
[9] CAI Shengye. Discussion of Drilling Bending and the Ways of Rectify Deviation [J]. J4, 2004, 12(3): 35-38.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!