img

Wechat

Adv. Search

Gold Science and Technology ›› 2021, Vol. 29 ›› Issue (4): 510-524.doi: 10.11872/j.issn.1005-2518.2021.04.194

• Mining Technology and Mine Management • Previous Articles     Next Articles

Research on Influencing Factors of International Gold Futures Price

Minggui ZHENG1,2(),Tianqi CAO1(),Jianlin ZENG1   

  1. 1.School of Economics and Management,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China
    2.School of Management,University of Science and Technology of China,Hefei 230026,Anhui,China
  • Received:2020-11-07 Revised:2021-03-08 Online:2021-08-31 Published:2021-10-11
  • Contact: Tianqi CAO E-mail:mgz268@sina.com;15770882892@163.com

Abstract:

Based on the dual functions of commodity and currency,this paper takes the great influence of gold price fluctuation on the world economy.At present,most of the literatures analyze the influencing factors of international gold futures price fluctuation from three aspects of supply and demand,finance and index.However,due to the instability of the global political and economic environment,international gold futures prices fluctuate violently.Few scholars consider the impact of geopolitical risks and economic policy uncertainty on the price fluctuations of international gold futures.At the same time,few scholars combine the above two factors with other variables to analyze the influencing factors of international gold futures price.In order to better explore the main influencing factors of international gold futures price,this paper used the monthly price data of international gold futures from 2000 to 2019,using VAR model,VECM model,cointegration test,impulse response and variance decomposition to conduct empirical research.At the same time,Granger causality test was used to analyze the causal relationship between the variables and the international gold futures price.The analysis focuses on the results of impulse response,which is different from the method of orthogonal impulse response in traditional dynamic analysis.In this paper,the generalized impulse response analysis method was used.The results show that there is a long-term equilibrium relationship between international gold futures price and geopolitical risk,economic policy uncertainty,dollar index,interest rate level,U.S. inflation level and the D-value between global gold supply and demand,and dollar index have the most significant impact on international gold futures price.Geopolitical risks and economic policy uncertainties have a positive impact on the international gold futures price in the short term,while the positive impact of economic policy uncertainties is longer.This paper provides a better theoretical basis for predicting the trend of gold price.

Key words: international gold futures price, geopolitical risks, economic policy uncertainty, VAR model, VECM model, impulse response

CLC Number: 

  • F831.5

Fig.1

International gold futures price,geopolitical risk index and global economic policy uncertainty index from 2000 to 2019"

Fig.2

International gold futures prices and US dollar index from 2000 to 2019"

Fig.3

International gold futures prices and interest rates from 2000 to 2019"

Fig.4

International gold futures prices and US inflation rate from 2000 to 2019"

Fig.5

International gold futures prices and global gold supply and demand from 2000 to 2019"

Table 1

Description of main variables"

变量类别变量名变量符号变量度量
被解释变量国际黄金期货价格GoldPCOMEX(纽约商品交易所)每月收盘价
解释变量地缘政治风险指数GPR参考Caldara和Iacoviello(2018)
全球经济政策不确定性指数GEPU参考Davis(2016)
美元指数USDX-
美国联邦基金有效利率FFR-
美国通货膨胀水平CPI-
全球黄金供需差值SD全球黄金供应量减去需求量

Table 2

Descriptive statistics of main variables"

变量均值中位数最小值最大值标准差偏度峰度样本量
GoldP936.851 074.40257.901 828.50464.24-0.09-1.36240
GPR103.9782.7827.21545.0970.402.7411.55240
GEPU121.01109.0949.35339.8056.571.301.63240
USDX106.00108.9186.34129.6412.470.09-1.30240
FFR1.781.160.076.541.921.06-0.10240
CPI215.36217.38169.30258.4425.46-0.19-1.20240
SD315.62322.90-208.50878.6292.13-0.03-0.69240

Table 3

Correlation coefficient between variables"

GoldPGPRGEPUUSDXFFRCPISD
GoldP1.0000------
GPR-0.07581.0000-----
GEPU0.61380.33051.0000----
USDX-0.59230.40570.08581.0000---
FFR-0.6289-0.1197-0.36490.29281.0000--
CPI0.88930.08920.7013-0.3852-0.53331.0000-
SD-0.5407-0.0082-0.16080.45820.6414-0.43221.000

Table 4

Stationarity test results of variables"

检验变量检验类型(C T P)ADF1%临界值5%临界值10%临界值Prob值平稳性
LNGoldP(C 0 0)-1.3238-3.4576-2.8734-2.57320.6188不平稳
LNGPR(C 0 0)-5.2220-3.4576-2.8734-2.57320.0000平稳
LNGEPU(C 0 1)-2.6919-3.4577-2.8735-2.57320.0769不平稳
LNUSDX(C 0 1)-1.3519-3.4577-2.8735-2.57320.6054不平稳
LNFFR(C 0 1)-1.55603-3.4577-2.8735-2.57320.5035不平稳
LNCPI(C 0 2)-1.4023-3.4579-2.8735-2.57320.5809不平稳
SD(C 0 0)-2.4588-3.4576-2.8734-2.57320.1270不平稳
DLNGoldP(C 0 0)-17.5378-3.4577-2.8735-2.57320.0000平稳
DLNGPR(C 0 1)-15.3546-3.4579-2.8735-2.57320.0000平稳
DLNGEPU(C 0 1)-13.7799-3.4579-2.8735-2.57320.0000平稳
DLNUSDX(C 0 0)-11.1712-3.4577-2.8735-2.57320.0000平稳
DLNFFR(C 0 0)-9.7003-3.4577-2.8735-2.57320.0000平稳
DLNCPI(C 0 1)-10.4613-3.4579-2.8735-2.57320.0000平稳
DSD(C 0 0)-15.3766-3.4577-2.8735-2.57320.0000平稳

Table 5

Selection of lag order of VAR model"

滞后阶数LogLLRFPEAICSCHQ
0-1 497.666NA0.00101412.9712613.0752613.01320
1986.82484 797.6387.72E-13-8.024352-7.192381*-7.688827
21 067.905151.6752*5.86e-13*-8.300902*-6.740956-7.671792*
31 100.11258.305626.80E-13-8.156134-5.868214-7.233440
41 122.45639.102028.60E-13-7.926341-4.910446-6.710062
51 153.05451.701451.02E-12-7.767710-4.023840-6.257846
61 176.83138.739091.28E-12-7.550265-3.078421-5.746817
71 208.74650.073361.51E-12-7.402980-2.203160-5.305946
81 251.79864.949741.63E-12-7.351707-1.423913-4.961089

Table 6

Roots of characteristic polynomials"

0.9995900.999590
0.9857160.985716
0.9614420.961442
0.913310-0.043144i0.914329
0.913310+0.043144i0.914329
0.7975800.797580
0.7328010.732801
0.297411-0.229582i0.375715
0.297411+0.229582i0.375715
-0.073840-0.230393i0.241936
-0.073840+0.230393i0.241936
0.1887850.188785

Fig.6

VAR model tests unit circle"

Table 7

Regression parameters"

参数名称数值
R20.994400
调整后的R20.994049
AIC-3.212908
SC-2.994068
Log likelihood397.3361

Table 8

Johansen co-integration test results"

参数名称数值
假设None*
特征值0.217696
迹统计量152.8994
临界值(5%)125.6154
迹检验P值0.0004
最大特征值统计量58.43189
临界值(5%)46.23142
最大特征值检验P值0.0016

Table 9

Normalized cointegration equation coefficients"

标准化的协整方程系数(括号内为标准误差)
LNGoldPLNGPRLNGEPULNUSDXLNFFRLNCPISDC
1.0000-0.0126*-0.6468***2.6347***0.0312*-1.8781***6.03E-05*-5.7484
(0.0382)(0.0687)(0.2182)(0.0162)(0.2637)(7.7E-05)
[-1.7329][-9.4088][12.0730][1.9312][-7.1216][1.7866]

Table 10

Regression results of VECM model"

D(LNGoldP)D(LNGPR)D(LNEPU)D(LNUSDX)D(LNFFR)D(LNCPI)D(SD)
CointEq10.0130380.2269400.333250***-0.020946***0.312555***0.004046***42.29613
(0.02469)(0.17456)(0.09026)(0.00713)(0.06602)(0.00132)(38.7620)
[0.52806][1.30006][3.69197][-2.93763][4.73448][3.07548][1.09117]
D(LNGoldP(-1))-0.126788*1.654308***-0.055850-0.042757**-0.1670330.008235**-215.8712**
(0.06868)(0.48557)(0.25109)(0.01983)(0.18364)(0.00366)(107.824)
[-1.84609][3.40691][-0.22243][-2.15576][-0.90958][2.25060][-2.00207]
D(LNGPR(-1))-0.024153***-0.168239***0.0524971.62E-050.038336-0.00017513.38613
(0.00909)(0.06430)(0.03325)(0.00263)(0.02432)(0.00048)(14.2776)
[-2.65590][-2.61655][1.57897][0.00615][1.57655][-0.36061][0.93756]
D(LNGEPU(-1))0.017827-0.144160-0.114810-0.0047950.0149100.000113-3.707458
(0.02035)(0.14384)(0.07438)(0.00588)(0.05440)(0.00108)(31.9410)
[0.87624][-1.00220][-1.54357][-0.81607][0.27409][0.10419][-0.11607]
D(LNUSDX(-1))-0.0760052.4207292.245845**0.276895***-0.975038-0.027883**-100.5175
(0.23904)(1.69007)(0.87391)(0.06903)(0.63916)(0.01274)(375.286)
[-0.31796][1.43233][2.56987][4.01105][-1.52550][-2.18932][-0.26784]
D(LNFFR(-1))-0.040695*-0.1938610.0099500.0110390.284772***-0.00163877.60889**
(0.02409)(0.17032)(0.08807)(0.00696)(0.06441)(0.00128)(37.8197)
[-1.68934][-1.13823][0.11298][1.58681][4.42111][-1.27591][2.05208]
D(LNCPI(-1))-1.73738710.665752.6188250.5074744.3775560.361571***-2084.040
(1.18888)(8.40560)(4.34644)(0.34334)(3.17889)(0.06334)(1866.50)
[-1.46136][1.26889][0.60252][1.47806][1.37707][5.70814][-1.11655]
D(SD)-1.48E-05-0.000456-5.80E-051.16E-053.85E-05-2.01E-07-0.017403
(4.2E-05)(0.00030)(0.00015)(1.2E-05)(0.00011)(2.2E-06)(0.06564)
[-0.35323][-1.54354][-0.37919][0.96227][0.34459][-0.09039][-0.26512]
C0.010630***-0.0256770.003112-0.000524-0.0107120.001057***3.020616
(0.00375)(0.02654)(0.01373)(0.00108)(0.01004)(0.00020)(5.89399)
[2.83139][-0.96738][0.22676][-0.48368][-1.06709][5.28189][0.51249]

Table 11

Granger causality test results"

原假设样本量F- 统计量P值
LNGPR does not Granger Cause LNGoldP2383.668090.027
LNGoldP does not Granger Cause LNGPR4.930410.008
LNGEPU does not Granger Cause LNGoldP2380.002150.9979
LNGoldP does not Granger Cause LNGEPU2.499050.0844
LNUSDX does not Granger Cause LNGoldP2380.148990.8617
LNGoldP does not Granger Cause LNUSDX3.460140.033
LNFFR does not Granger Cause LNGoldP2381.755300.1751
LNGoldP does not Granger Cause LNFFR0.260470.7709
LNCPI does not Granger Cause LNGoldP2382.747000.0662
LNGoldP does not Granger Cause LNCPI5.819830.0034
SD does not Granger Cause LNGoldP2380.498530.6081
LNGoldP does not Granger Cause SD1.907790.1507

Fig.7

Results of generalized impulse response analysis"

Table 12

Results of variance decomposition"

期数S.E.LNGoldPLNGPRLNGEPULNUSDXLNFFRLNCPISD
10.047082100.00000.0000000.0000000.0000000.0000000.0000000.000000
20.06202797.085661.6450680.0154720.0136080.6617430.5450770.033376
30.07243595.611781.9280800.0430500.0100241.1495941.2159340.041537
40.08095294.875861.9492830.0566540.0089221.3845711.6544670.070239
50.08830494.434111.9375840.0631810.0241121.5277111.8957300.117570
60.09484194.108881.9215090.0614780.0686511.6318852.0260000.181595
70.10077993.820571.9131450.0552940.1450481.7129272.0946820.258332
80.10625293.534231.9160500.0504410.2508231.7762932.1279180.344242
90.11135593.236661.9297370.0525970.3817611.8239782.1394430.435828
100.11616392.923421.9527660.0666310.5333391.8572712.1368430.529730
110.12073092.593911.9834930.0963280.7011101.8774772.1246960.622980
120.12510092.249542.0202710.1443180.8808251.8859522.1059820.713111
Algieri B,Leccadito A,2019.Price volatility and speculative activities in futures commodity markets:A combination of combinations of p-values test[J].Journal of Commodity Markets,(13):40-54.
Balcilar M,Gupta R,Pierdzioch C,al et,2016.Does uncertainty move the gold price?New evidence from a nonparametric causality-in-quantiles test[J].Resources Policy,49:74-80.
Batten J A,Ciner C,Lucey B M,al et,2010.The macroeconomic determinants of volatility in precious metals markets[J].Resources Policy,35:65-71.
Bilgin M,Gozgor G,Lau C,al et,2018.The effects of uncertainty measures on the price of gold[J].International Review of Financial Analysis,58:1-7.
Caldara D,Iacoviello M,2018.Measuring geopolitical risk[J].Social Science Research Network,(1222):1-66.DOI:10.17016/IFDP.2018.1222.
doi: 10.17016/IFDP.2018.1222
Chen Yanyan,2018.A review of political uncertainty and corporate behavior[J].Communication of Finance and Accounting,(6):116-123,129.
Chirwa T G,Odhiambo N M,2020.Determinants of gold price movements:An empirical investigation in the presence of multiple structural breaks[J].Resources Policy,69:101 818.
Davis S J,2016.An index of global economic policy uncertainty[R].New York:NBER Working Papers.
Erb C B,Harvey C R,2013.The golden dilemma[J].Financial Analysts Journal,69(4):10-42.
Fang L B,Yu H H,Xiao W,al et,2018.Forecasting gold futures market volatility using macroeconomic variables in the United States[J].Economic Modelling,72:249-259.
Feng Hui,Zhang Shulin,2012.Empirical analysis of determinants of international gold futures price[J].Chinese Journal of Management Science,20(Supp.1):424-428.
Feng Yuyao,Liu Chang,Sun Xiaolei,2020.Measurement of interaction between uncertainty and crude oil market:A multi-scale methodology based on comprehensive integration[J].Management Review,32(7):29-40.
Gao Fei,Gu Weiyu,2018.An analysis on the influencing factors of international gold price:Perspective of the dual nature of gold as a commodity and as a value guarantee[J].China Soft Science,(5):160-170.
Hayo B,Kutan A M,Neuenkirch M,2012.Communication matters:US monetary policy and commodity price volatility[J].Economics Letters,(1):247-249.
Hossein H,Sirimal S M,Rangan G,al et,2015.Forecasting the price of gold[J].Applied Economics,47(39):4141-4152.
Hu Entong,2005.Dual attributes of gold and its price determination mechanism[J].Gold Science and Technology,13(5):1-7.
Hua Jian,Liu Chenjun,2010.The change of gold price from the perspective of supply and demand[J].Finance and Economics,(12):30-33.
Huang Guoxuan,2019.An empirical study on the function of price discovery in China’s gold futures market[J].Price:Theory&Practice,(9):92-95.
Jegadeesh N,Titman S,1993.Returns to buying winners and selling losers:Implications for stock market efficiency[J].Journal of Finance,48(1):65-91.
Kanjilal K,Ghosh S,2014.Income and price elasticity of gold import demand in India:Empirical evidence from threshold and ARDL bounds test cointegration[J].Resources Policy,41:135-142.
Koop G,Pesaran M H,Potter S M,al et,1996.Impulse response analysis in nonlinear multivariate models[J].Journal of Econometrics,74(1):119-147.
Levin E J,Wright R E,2006.Short-run and long-run determinants of the price of gold[R].London:World Gold Council.
Li Y L,Huang J B,Chen J Y,2020.Dynamic spillovers of geopolitical risks and gold prices:New evidence from 18 emerging economies[J].Resources Policy,70:101938.
Liu Haoran,2007.Analysis of factors influencing gold price and investment strategy[J].Price:Theory&Practice,(10):57-58.
Liu Jie,2017.Oil and gold price linkage analysis[J].Gold,38(2):5-7 ,14.
Liu Shuguang,Hu Zaiyong,2008.Stability analysis of long-term determinants of gold price[J].World Economy Studies,12(2):35-41,87.
Lu Guoqing,Li Mingxue,2017.Research on the linkage between US dollar index and gold price[J].Price:Theory&Practice,(5):109-112.
Mayer H,Rathgeber A W,Wanner M,al et,2017.Financialization of metal markets:Does futures trading influence spot prices and volatility?[J].Resources Policy,53:300-316.
Mellios C,Six P,Lai A N,al et,2016.Dynamic speculation and hedging in commodity futures markets with a stochastic convenience yield[J].European Journal of Operational Research,250(2):493-504.
Mensiab W,Sensoyc A,Vinh Vo X,al et,2020.Impact of COVID-19 outbreak on asymmetric multifractality of gold and oil prices[J].Resources Policy,69:101829.
Mo D,Gupta R,Li B,al et,2017.The macroeconomic determina-nts of commodity futures volatility:Evidence from Chine-se and Indian markets[J].Economic Modelling,70:543-560.
Owusu O,Wireko I,Mensah A K,al et,2016.The performance of the mining sector in Ghana:A decomposition analysis of the relative contribution of price and output to revenue growth[J]Resources Policy,50:214-223.
Qian Y,Ralescu D A,Zhang B,2019.The analysis of factors affecting global gold price[J].Resources Policy,64:101478.
Raza S A,Shah N,Shahbaz M,al et,2018.Does economic policy uncertainty influence gold prices?Evidence from a nonparametric causality-in-quantiles approach[J].Resources Policy,57:61-68.
Schmidbauer H,Röschc A,2018.The impact of festivities on gold price expectation and volatility[J].International Review of Financial Analysis,58:117-131.
Wang H,Sheng H,Zhang H W,al et,2019.Influence factors of international gold futures price volatility[J].Transactions of Nonferrous Metals Society of China,29(11):2447-2454.
Yang Liuyong,Shi Zhentao,2004.Analysis of long-term determinants of gold price[J].Statistical Research,21(6):21-24.
Yang Shenggang,Chen Shuaili,Wang Dun,2014.Research on influencing factors of gold futures price in China[J].The Theory and Practice of Finance and Economics,35(3):44-48.
Yang Ye,2007.Linkage analysis of gold price and oil price[J].Gold,28(2):4-7.
Yang Zhenguo,Zhang Tong,2009.Analysis of gold market speculation[J].Finance and Accounting Monthly,4(12):41-43.
Zhang Cilan,Huan Hongyan,2009.Empirical analysis of oil price and gold price[J].Southwest Finance,(3):50-51.
Zhang Qidi,2017.Influencing factors and future trend of global gold price[J].South China Finance,(4):74-83.
Zhu X H,Zhang H W,Zhong M R,2017.Volatility prediction of China’s nonferrous metals futures market[J].Transactions of Nonferrous Metals Society of China,27(5):1206-1214.
Zhu Y H,Fan J W,Tucker J,2018.The impact of monetary policy on gold price dynamics[J].Research in International Business and Finance,44:319-331.
Zou Zi’ang,Peng Xiaofan,Pi Jun,2018.Research on hedging ability of international gold spot market—Based on DCC-GARCH model[J].The Theory and Practice of Finance and Economics,39(6):44-50.
陈艳艳,2018.政治不确定性与企业行为研究述评[J].财会通讯,(6):116-123,129.
冯辉,张蜀林,2012.国际黄金期货价格决定要素的实证分析[J].中国管理科学,20(增1):424-428.
冯钰瑶,刘畅,孙晓蕾,2020.不确定性与原油市场的交互影响测度:基于综合集成的多尺度方法论[J].管理评论,32(7):29-40.
高菲,顾炜宇,2018.“一般商品-保值手段”双重属性视角下的国际黄金价格影响因素研究[J].中国软科学,(5):160-170.
胡恩同,2005.黄金的双重属性与其价格决定机制[J].黄金科学技术,13(5):1-7.
华健,刘辰君,2010.从供需角度看黄金价格的变化[J].金融与经济,(12):30-33.
黄国轩,2019.我国黄金期货市场价格发现功能实证研究[J].价格理论与实践,(9):92-95.
刘昊然,2007.黄金价格影响因素和投资策略分析[J].价格理论与实践,(10):57-58.
刘杰,2017.石油与黄金的价格联动分析[J].黄金,38(2):5-7,14.
刘曙光,胡再勇,2008.黄金价格的长期决定因素稳定性分析[J].世界经济研究,12(2):35-41,87.
陆国庆,李明雪,2017.美元指数与黄金价格联动性研究[J].价格理论与实践,(5):109-112.
杨柳勇,史震涛,2004.黄金价格的长期决定因素分析[J].统计研究,21(6):21-24.
杨胜刚,陈帅立,王盾,2014.中国黄金期货价格影响因素研究[J].财经理论与实践,35(3):44-48.
杨叶,2007.黄金价格和石油价格的联动分析[J].黄金,28(2):4-7.
杨振国,张彤,2009.黄金市场投机度分析[J].财会月刊,4(12):41-43.
张次兰,郇红艳,2009.石油价格与黄金价格的实证分析[J].西南金融,(3):50-51.
张启迪,2017.全球黄金价格的影响因素及未来趋势[J].南方金融,(4):74-83.
邹子昂,彭啸帆,皮俊,2018.国际黄金现货市场的避险能力研究——基于DCC-GARCH模型[J].财经理论与实践,39(6):44-50.
[1] Minggui ZHENG,Qunting PENG,Simin TAO,Lizhen LIU. Economic Policy Uncertainty,Investor Sentiment and Gold Price Volatility [J]. Gold Science and Technology, 2022, 30(6): 891-900.
[2] ZHANG Wenwei, DI Qingyun, LEI Da, MA Fengshan. Multi-channel Transient Electromagnetic Method:A New Geophysical Method and Its Application in Exploring Metallic Ore Deposits [J]. Gold Science and Technology, 2018, 26(1): 1-8.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!