img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (6): 809-821.doi: 10.11872/j.issn.1005-2518.2022.06.178

• Mineral Exploration and Resource Evaluation •     Next Articles

Geochemical Characteristics and Geological Significance of Ore-bearing Pegmatites in the Wulan Chakabeishan Area

Jianguo WANG1,2(),Shizhen ZHANG3(),Jia XING1,Zhinan WANG1,Shengyun WEI1,Jian HU1   

  1. 1.Department of Geological Engineering, Qinghai University, Xining 810016, Qinghai, China
    2.State Key Laboratory of Mineral Processing Science and Technology, Beijing 102628, China
    3.The Third Institute of Geology and Minerals Exploration, Gansu Provincial Bureau of Geology and Minerals Exploration and Development, Lanzhou 730050, Gansu, China
  • Received:2021-11-26 Revised:2022-10-18 Online:2022-12-31 Published:2023-01-06
  • Contact: Shizhen ZHANG E-mail:lywjg467047@126.com;2097798599@qq.com

Abstract:

Rare,scattered and rare earth non-ferrous metals is new strategic key mineral resources.At present,some research understandings and breakthroughs have been made in the mineralization and prospecting of key metal deposits in China.Pegmatite type deposit is one of the main sources of rare metal mineral resources,and the rare metal deposits is the most typical of pegmatite types in western China.The magmatic activities are very frequent,and the magmatic rocks are widely distributed,mainly medium-acidic rocks,and very few basite and ultrabasic rock in the Wulan Chakabeishan area of the northern margin of the Qaidam Basin.The main types of rocks with good conditions for forming rare metal deposits,which include syenite granite,monzonitic granite,granodiorite,quartz diorite,tonalite,diorite,gabbro,etc.In order to further understand the geochemical characteristics of the ore-bearing pegmatites in the research area and deepen the understanding of regional tectonic evolution,the mineralization of rare metals and the ore-controlling conditions,the ore-bearing pegmatite was taken as the research object,and the rock mineral features,main trace and rare earth elements composition were analyzed.In the study area,pegmatite vein was band-distributed,outputed in clusters,various types,morphological pulse,beads,lens,and under obvious structural control.The types of pegmatite that closely related to the mineralization of rare metals include mainly muscovite-biotite granite,syenite granite pegmatite,monzonitic granite pegmatite,quartz diorite pegmatite and granodiorite pegmatite.The study found that the ore-bearing pegmatites have high total alkali content,which is similar to the diagenesis characteristics formed in the continental arc or plate collision environment.The partition curve of rare earth is right-leaning,and the light and heavy rare earth fractionation is obvious,and the Eu with medium negative anomaly,it is speculated that the ore-bearing pegmatite source area is not only related to the crust,but also has the possibility of mantle source mafic magma was participated.The results show that the pegmatites were classified and named by the total alkalisili-con (TAS) classification map of the igneous rock system,the samples all fall in the granite-quartz monzonite-syenite area,which belongs to the sub-alkaline rock,and ore-bearing pegmatites have the characteristics of high silicon and overaluminum,and the pegmatites may have experienced the crystallization and separation of mica and feldspar.In this research region,the light rare earth elements is enriched,the heavy rare earth elements is lossed and the fractionation degree is high about ore-bearing pegmatite,it reflects that the mantle source material may be involved in the mineralization of rare metals and rare earth in the magma evolution and diagenetic process of pegmatite.The mineralization is more likely about Rb,Th,Cs,Ce and other rare metal,Ba,Zr,Hf,Nb,Ta,Li and other rare metals have potential for mineralization,and Sr,Y and other rare metals mineralization is little possibility.It is considered that the material source of pegmatites is related to the crust and the participation of mantle source material,and it is inferred that the geological tectonic environment of ore-bearing pegmatites may be post-collision or post-collision extension.The results of the research can provide a theoretical basis for the prospecting of pegmatite type rare metal deposits in the later stage.

Key words: pegmatite, geochemistry, material source, tectonic environment, rare metal deposits, north Qaidam

CLC Number: 

  • P618.6

Fig.1

Regional geological map of the northern Qaidam Basin(modified after Yu,2021)"

Fig.2

Photographs of pegmatite hand specimens of the Wulan Chakabeishan"

Fig.3

Microscopic photos of pegmatite in Wulan Chakabeishan"

Table 1

Major elements composition of ore-bearing pegmatites in the Wulan Chakabeishan"

氧化物样品编号及测试结果/%
CKBS-1CKBS-2CKBS-3CKBS-4CKBS-5CKBS-6
SiO261.3174.1762.7562.2271.3571.49
Al2O313.9012.7017.0317.2413.5613.82
CaO3.141.102.903.121.441.01
MgO4.110.251.441.400.240.25
K2O7.445.244.424.545.315.32
Na2O2.292.743.984.043.833.92
TiO20.890.241.011.070.200.32
P2O50.380.100.300.310.090.16
MnO0.080.040.060.070.030.03
TFe2O34.932.454.254.212.072.55
LOI1.011.151.691.862.111.78
K2O+Na2O9.737.988.408.589.149.24

Fig.4

Total alkali-silicon(TAS)classification diagram of igneous rock system (base map after Middlemost,1994)"

Table 2

Trace elements composition of ore-bearing pegmatites in the Wulan Chakabeishan"

元素样品编号及测试结果/(×10-6
CKBS-1CKBS-2CKBS-3CKBS-4CKBS-5CKBS-6
Rb387.00266.00134.00138.50229.00234.00
Ba2 600.00454.001 680.001 665.00689.00937.00
Nb24.4015.8020.9021.4012.0019.20
Ce151.50121.00177.50192.5088.6066.60
Ta1.671.061.421.490.631.07
Sr702.0093.60771.00775.00139.00145.50
Be5.343.352.873.351.902.43
Li25.8034.5039.9046.8020.2023.60
Y29.3063.7010.5011.0034.1041.80
Cs19.655.413.134.002.703.14
Zr507.00223.00421.00438.00184.00264.00
Hf12.706.6010.0010.405.707.90
Ga21.5023.6024.7024.5022.9024.10
Pb54.8030.0043.2036.0029.5028.60
Th43.7037.6041.6048.8019.6529.70
U6.562.743.904.122.642.98
Rb/Sr0.552.840.170.181.651.61
Nb/Ta14.6114.9114.7214.3619.0517.94

Fig.5

Primitive mantle-normalized spider diagram of trace elements (base map after Sun et al.,1989)"

Table 3

Rare earth elements composition of ore-bearing pegmatites in the Wulan Chakabeishan"

元素样品编号及测试结果/(×10-6
CKBS-1CKBS-2CKBS-3CKBS-4CKBS-5CKBS-6
La71.8061.1094.30102.0044.2030.30
Ce151.50121.00177.50192.5088.6066.60
Pr18.1013.9519.1020.4010.558.01
Nd68.9050.8065.9068.2039.1031.20
Sm12.3011.259.9110.358.798.41
Eu2.850.921.831.950.710.75
Gd8.6811.805.765.907.668.22
Tb1.141.990.670.701.211.42
Dy5.6711.302.682.676.417.85
Ho1.042.270.370.381.101.40
Er2.746.220.700.772.793.64
Tm0.360.850.080.090.380.51
Yb2.255.090.410.442.162.89
Lu0.330.720.050.060.300.39
ΣREE347.66299.26379.26406.41213.96171.59
LREE325.45259.02368.54395.4191.95145.27
HREE22.2140.2410.7211.0122.0126.32
LREE/HREE14.656.4434.3835.918.725.52
LaN/YbN22.898.61164.98166.2814.687.52
LaN/SmN5.845.439.529.865.033.60
δEu0.800.240.680.700.260.27
δCe1.000.980.970.980.971.03

Fig.6

Chondrite-normalized distribution pattern diagram of rare earth element (base map after Sun et al.,1989)"

Fig.7

LaN/YbN-δEu material source diagram(base map after Chen et al.,2009)"

Fig.8

Diagram of tectonic environment discrimination"

Bai Hongyang, Wang He, Yan Qinghe,et al,2022.Columbite-tantalite and cassiterite ages of Xuefengling lithium deposit in west Kunlun,Xinjiang and their geological significance[J].Acta Petrologica Sinica,38(8):2139-2152.
Blackmon M, Geisler J, Pitcher E,1983.A general circulation model study of January climate anomaly patterns associated with interannual variation of equatorial Pacific sea surface temperatures[J].Journal of the Atmospheric Sciences,40(6):1410-1425.
Chen Jin,2011.The Petrogeochemistry of Intermediate-Acidic Intrusive Rocks in Shengge Area and Its Tectonic Significance[D].Xi’an:Chang’an University.
Chen Xijing,1976.Deep-seated magmatic differentiation and the formation of granite pegmatites in a certain district,China[J].Geochimica,(3):213-229.
Chen Youwei, Bi Xianwu, Hu Ruizhong,et al,2009.Comparison of geochemical chararcteristic of uranium-and non-uranium-bearing indosinian granites in Guidong composite pluton[J].Mineralogy and Petrology,29(3):106-114.
Deng Jinfu, Xiao Qinghui, Su Shangguo,et al,2007.Igneous petrotectonic assemblages and tectonic settings:A discussion[J].Geological Journal of China Universities,13(3):392-402.
Fan Z W, Xiong Y Q, Shao Y J,et al,2022.Textural and chemical characteristics of beryl from the Baishawo Be-Li-Nb-Ta pegmatite deposit,Jiangnan Orogen:Implication for rare metal pegmatite genesis[J].Ore Geology Reviews,149:1-14.
Feng Jing, Jia Hongxu, Xu Shiqi,et al,2021.Prospecting model of pegmatite type lithium beryllium deposit in Dahongliutan ore concentration area of west Kunlun and its geological implications[J].Xinjiang Geology,39(3):410-417.
Fu Chengming, Quan Zhigao, Zhou Wei,2011.Analysis on the character of U and REE mineralization and prospecting potential of Chachaxiangka deposit in Qinghai[J].Uranium Geology,27(2):103-107.
Hu Xiaojun, Li Huan,2021.Research progress and prospect of granitic pegmatile-type lithium deposits[J].The Chinese Journal of Nonferrous Metals,31(11):3468-3488.
Jiang Chunfa,2002.Several important geological problems in the central orogenic belt and their research progress[J].Geological Bulletin of China,21(Supp.2):453-355.
Kempe U, Gotze J, Dandar S,1999.Magmatic and metasomatic processes during formation of the Nb-Zr-REE deposits Khaldzan Buregte and Tsakhir(Mongolian Altai):Indications from a combined CL-SEM study[J].Mineralogical Magazine,63(2):165-177.
Li Jiankang, Wang Denghong, Zhang Dehui,et al,2006.The discovery of silicate daughter mineral-bearing inclusions in the Jiajika pegmatite deposit,western Sichuan,and its significance[J]. Mineral Deposits,25(Supp.):131-134.
Li Shanping, Xue Wanwen, Ren Hua,et al,2018.Status quo and metallogenic regularity of “Three rare” mineral resources in Qinghai Province[J].Qinghai Science and Technology,25(6):10-15.
Li Shanping, Zhan Shouzhi, Jin Tingting,et al,2016.REE geochemical characteristics and provenance analysis of the Shaliuquan niobium tantalum pegmatite[J].Chinese Rare Earths,37(1):39-46.
Li Shenghu, Li Jiankang, Zhang Dehui,2015.Application of hydrothermal diamond-anvil cell in fluid Inclusions:An example from the Jiajika pegmatite deposit in western Sichuan,China[J].Acta Geologica Sinica,89(4):747-754.
Li Xianfang, Tian Shihong, Wang Denghong,et al,2020.The genetic relationship between granite and pegmatite in the west Sichuan Methyl-Carli deposit:U-Pb dating,Hf-O isotope and geochemical evidence[J].Mineral Deposits,39(2):273-304.
Liang Fei,2018.General Situation,Supply and Demand Forecast and Development Strategy of Beryllium Resources in China[D].Beijing:Chinese Academy of Geological Sciences.
Maniar P D, Piccoli P M,1989.Tectonic discrimination of granitoids[J].Geological Society of America Bulletin,101(5):635-643.
Mao Jingwen, Yuan Shunda, Xie Guiqing,et al,2019. New advances on metallogenic studies and exploration on critical minerals of China in 21st century[J].Mineral Deposit,38(5):935-969.
Michael B,1991.Rare-earth element mobility during hydrothermal and metamorphic fluid-rock interaction and the significance of the oxidation state of europium[J].Chemical Geology,93(3):219-230.
Middlemost E,1994.Naming materials in the magma/igneous rock system[J].Earth-Science Reviews,37(3/4):215-224.
Pan Tong, Li Shanping, Ren Hua,et al,2020.Metallogenic conditions and prospecting potential of lithium polymetallic deposits in North Qaidam Basin[J].Mineral Exploration,11(6):1101-1116.
Pearce J A, Harris N B W, Tindle A G,1984.Trace element discrimination diagrams for the tectonic interpretation of granitic rocks[J].Journal of Petrology,25(4):956-983.
Qiao G B, Wu Y Z, Liu T,2021.Zircon U-Pb age of pegmatite veins in Dahongliutan lithium deposit,western Kunlun[J].China Geology,4(1):185-187.
Sun S S, Mcdonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implication for mantle composition and process[J].Geological Society,42(1):313-345.
Tischendorf G, Paelchen W,1985.Zur Klassfication von granitoiden/classification of granitoids[J].Zeit Schrift fuer Geologische Wissenschaften,13(5):615-627.
Wang Bingzhang, Han Jie, Xie Xianglei,et al,2020.Discovery of the Indosinian(Beryl-bearing) spodumene pegmatitic dike swarm in the Chakaibeishan area in the northeastern margin of the Tibetan Plateau:Implications for Li-Be mineralization[J].Geotectonica et Metallogenia,44(1):69-79.
Wang D H, Dai H Z, Liu S B,2020.Research and exploration progress on lithium deposits in China[J].China Geology,3(1):137-152.
Wang Dezi, Zhou Jincheng,1999.Look back and look forward to granite research[J].Acta Petrologica Sinica,15(2):161-169.
Wang He, Li Pei, Ma Huadong,et al,2017.Discovery of the Bailongshan superlarge lithium-rubidium deposit in Karakorum,Hetian,Xinjiang,and its prospecting implication[J].Geotectonica et Metallogenia,41(6):1053-1062.
Wang Xiaowei, Xu Xueyi, Ma Zhongping,et al,2015.Geochemical characteristics of the Late Carboniferous bimodal volcanic rocks in Jijitaizi area,eastern Bogda orogenic belt,and their geological significance[J].Geology in China,42(3):553-569.
Wang Zhonggang, Yu Xueyuan, Zhao Zhenhua,1989.Rare Earth Element Geochemistry[M].Beijing:Science Press.
Wu Cailai, Lei Min, Wu Di,et al,2016.Zircon SHRIMP dating and genesis of granites in Wulan area of Northern Qaidam[J]. Acta Geoscientica Sinica,37(4):493-516.
Xu Xinwen,2009.The types,characteristics and prospecting direction of niobium-tantalum deposits in Qinghai Provi-nce[J].West-China Exploration Engineering,21(3):144-147.
Yan Tingting,2011.Study on Geochemistry and Tectonic Environment of Intrusive Rocks in North Qaidam Shaliuquan[D].Xi’an:Chang’an University.
Yin Hongfu, Zhang Kexin,1997.Characteristics of the eastern Kunlun orogenic belt[J].Earth Science,22(4):339-342.
Yu Junzhen,2021.Paleozoic Gold Mineralization in the Sai-shiteng Mountain-Xitieshan Area in Western Part of North Qaidam in Qinghai Province,China[D].Wuhan:China University of Geosciences.
Yuan Zhongxin, Bai Ge,2001.Temporal and spatial distribution of endogenic rare and rare earth mineral deposits of China[J].Mineral Deposits,20(4):347-354.
Zhang Yongming,2017.Indosinian Tectonic-Magmatism and Regional Tectonic Evolution in the Qinghai Nanshan Tectonic Belt[D].Xi’an:Chang’an University.
Zhong Jun, Chen Qing, Fan Honghai,et al,2018.Geological characteristics and ore genesis of the Chachaxiangka U-Th-Nb-REE deposit in the northeastern Qaidam Basin:A new mineralization type related to albitite[J].Earth Science Frontiers,25(5):222-236.
Zhu X P, Zhang B, Ma G T,et al,2022.Mineralization of ion-adsorption type rare earth deposits in western Yunnan,China[J].Ore Geology Reviews,148:1-14.
白洪阳,王核,闫庆贺,等,2022.新疆西昆仑雪凤岭锂矿床铌钽铁矿、锡石年龄及其地质意义[J].岩石学报,38(8):2139-2152.
陈金,2011.青海省乌兰县生格地区中—酸性侵入岩岩石地球化学特征及其构造意义[D].西安:长安大学.
陈西京,1976.深处岩浆分异与某地花岗伟晶岩的形成[J].地球化学,(3):213-229.
陈佑纬,毕献武,胡瑞忠,等,2009.贵东复式岩体印支期产铀和非产铀花岗岩地球化学特征对比研究[J].矿物岩石,29(3):106-114.
邓晋福,肖庆辉,苏尚国,等,2007.火成岩组合与构造环境:讨论[J].高校地质学报,13(3):392-402.
冯京,贾红旭,徐仕琪,等,2021.西昆仑大红柳滩矿集区伟晶岩型锂铍矿床找矿模型及意义[J].新疆地质,39(3):410-417.
傅成铭,权志高,周伟,2011.青海查查香卡矿床铀、稀土元素矿化特征及成矿潜力分析[J].铀矿地质,27(2):103-107.
胡晓君,李欢,2021.花岗伟晶岩型锂矿床研究进展及展望[J].中国有色金属学报,31(11):3468-3488.
姜春发,2002.中央造山带几个重要地质问题及其研究进展[J].地质通报,21(增2):453-355.
李建康,王登红,张德会,等,2006.川西甲基卡伟晶岩型矿床中含硅酸盐子矿物包裹体的发现及其意义[J].矿床地质,25(增):131-134.
李善平,薛万文,任华,等,2018.青海省“三稀”矿产资源现状及成矿规律[J].青海科技,25(6):10-15.
李善平,湛守智,金婷婷,等,2016.青海沙柳泉铌钽矿床伟晶岩稀土元素地球化学特征及物源分析[J].稀土,37(1):39-46.
李胜虎,李建康,张德会,2015.热液金刚石压腔在流体包裹体研究中的应用——以川西甲基卡伟晶岩型矿床为例[J].地质学报,89(4):747-754.
李贤芳,田世洪,王登红,等,2020.川西甲基卡锂矿床花岗岩与伟晶岩成因关系:U-Pb定年、Hf-O同位素和地球化学证据[J].矿床地质,39(2):273-304.
梁飞,2018.我国铍资源特征、供需预测与发展探讨[D].北京:中国地质科学院.
毛景文,袁顺达,谢桂青,等,2019.21世纪以来中国关键金属矿产找矿勘查与研究新进展[J].矿床地质,38(5):935-969.
潘彤,李善平,任华,等,2020.柴达木盆地北缘锂多金属矿成矿条件及找矿潜力[J].矿产勘查,11(6):1101-1116.
王秉璋,韩杰,谢祥镭,等,2020.青藏高原东北缘茶卡北山印支期(含绿柱石)锂辉石伟晶岩脉群的发现及Li-Be成矿意义[J].大地构造与成矿学,44(1):69-79.
王德滋,周金城,1999.我国花岗岩研究的回顾与展望[J].岩石学报,15(2):161-169.
王核,李沛,马华东,等,2017.新疆和田县白龙山超大型伟晶岩型锂铷多金属矿床的发现及其意义[J].大地构造与成矿学,41(6):1053-1062.
王中刚,于学元,赵振华,1989.稀土元素地球化学[M].北京:科学出版社.
汪晓伟,徐学义,马中平,等,2015.博格达造山带东段芨芨台子地区晚石炭世双峰式火山岩地球化学特征及其地质意义[J].中国地质,42(3):553-569.
吴才来,雷敏,吴迪,等,2016.柴北缘乌兰地区花岗岩锆石SHRIMP定年及其成因[J].地球学报,37(4):493-516.
徐新文,2009.青海省铌钽矿类型、特征及找矿方向[J].西部探矿工程,37(3):144-147.
闫亭廷,2011.柴北缘沙柳泉地区侵入岩地球化学特征及构造环境研究[D].西安:长安大学.
殷鸿福,张克信,1997.东昆仑造山带的一些特点[J].地球科学,22(4):339-342.
俞军真,2021.青海柴北缘西段赛什腾山—锡铁山古生代金成矿作用[D].武汉:中国地质大学.
袁忠信,白鸽,2001.中国内生稀有稀土矿床的时空分布[J].矿床地质,20(4):347-354.
张永明,2017.青海南山构造带印支期构造岩浆作用与区域构造演化[D].西安:长安大学.
钟军,陈擎,范洪海,等,2018.柴北缘查查香卡铀—钍—铌—稀土矿床地质特征及矿床成因:一种与钠长岩相关的新矿化类型[J].地学前缘,25(5):222-236.
[1] Xiaoping ZHOU, Mingchun SONG, Xiangdong LIU, Chunming YAN, Zhaojun HU, Haigang SU, Bingqian HU, Yikang ZHOU. Formation Age,Petrogenesis,and Implications for Gold Mineralization of Giant Porphyritic Granite in the Sanshandao Gold Deposit in Jiaodong [J]. Gold Science and Technology, 2024, 32(5): 813-829.
[2] Ke HAN, Xingke YANG. Study on the Ore-forming Materials Source of the Western Zhen’an W-Mo Ore Concentration Area in Southern Qinling Moutains [J]. Gold Science and Technology, 2024, 32(1): 13-30.
[3] Fenglong LIU, Jia’en WANG, Yuandong LIU, Dahai SUN, Haiyan CHENG, Yanhua HU, Wen HUANG, Zhen WANG, Shaojun PAN. Geochronology and Geochemistry Characteristics of Jiuhuashan Intrusion Rocks in Quzhou,Zhejiang Province [J]. Gold Science and Technology, 2024, 32(1): 31-40.
[4] Li LI, Guoguang WANG, Haili LI, Huiliang XIAO, Lezhu CHEN. Geochemical Characteristics and Geological Significance of the Ore-forming Granite of Indosinian Baishi W-Cu Deposit in Southern Jiangxi Province [J]. Gold Science and Technology, 2023, 31(5): 736-751.
[5] Tong PAN,Jianzhou CHEN,Chengwang DING,Yuliang MA,Hui LIANG,Tao ZHANG,Xiaochun DU. Occurrence Characteristics of Lithium Rare Light Metal Clay-type Deposits in Balunmahai Basin of Qaidam Basin [J]. Gold Science and Technology, 2023, 31(3): 359-377.
[6] Wenwei CUI,Huixia CHAO,Hujun HE,Xingke YANG,Junjie YANG,Haolei ZHU,Xu WU. Element Geochemical Characteristics and Significance of Ore,Wall Rock and Stratum in Fuwen Gold Deposit,Hainan [J]. Gold Science and Technology, 2023, 31(3): 423-432.
[7] Yong ZHANG,Aikui ZHANG,Shuyue HE,Zhigang LIU,Yongle LIU,Peng ZHANG,Feifei SUN. Age,Petrogenesis and Tectonic Significance of Granodiorite in Kudeerte Gold Deposit,Qimantage Area,East Kunlun [J]. Gold Science and Technology, 2023, 31(1): 1-14.
[8] Zhenliang CAO,Xuelong LIU,Shoukui LI,Sihan LIU,Fanglan LI,Bowen ZHOU. Comparison of Geochemical Characteristics Between Yanshanian Ore-bearing Granites in Northwest Yunnan and Global Adakites [J]. Gold Science and Technology, 2023, 31(1): 15-25.
[9] Yupeng ZHANG,Dongyan SHI,Mingqi LV,Chenglu LI,Kun ZHANG,Wei TANG. Application Effect of Rock Debris Geochemical Survey in Prospecting in Sandaowanzi Shallow Overburden Area,Heilongjiang Province [J]. Gold Science and Technology, 2022, 30(5): 651-663.
[10] Jia XING,Jianguo WANG,Zhinan WANG,Jian HU,Shengyun WEI. Geochemical Composition and Genetic Analysis of Gabbro of Saibagou Gold Deposit,Qinghai Province [J]. Gold Science and Technology, 2022, 30(5): 664-675.
[11] Hongke FAN,Genming GUO,Bobo DONG,Kai ZHANG,Yuxin LIU. Characteristics of Rock Geochemical Anomalies and Its Prospecting Effect of the Songshudaban Gold Deposit in Yanqi County,Xinjiang [J]. Gold Science and Technology, 2021, 29(4): 477-488.
[12] Yifan LI,Hongkui LI,Xuelin HAN,Ke GENG,Yubo ZHANG,Guodong CHEN. Genesis of Xiadian Gold Deposit in Jiaodong:Evidence from Fluid Inclusions and Isotopes [J]. Gold Science and Technology, 2021, 29(2): 184-199.
[13] Songtao LI,Jianzhong LIU,Yong XIA,Zhuojun XIE,Qinping TAN,Zepeng WANG,Guanghong ZHOU,Chengfu YANG,Minghua MENG,Lijin TAN,Xiaoyong WANG,Junhai LI,Liangyi XU,Dafu WANG. Tectono-geochemistry Weak Mineralization Information Extraction Method and Its Application in the Carlin-type Gold Accumulation Area of South-western Guizhou [J]. Gold Science and Technology, 2021, 29(1): 53-63.
[14] Peijiao JU. Tectono-Geochemical Characteristics of Liyuan Gold Mine in the North Section of Taihang Mountain [J]. Gold Science and Technology, 2021, 29(1): 64-73.
[15] Qichao DUAN, Xucheng PANG, Rui ZONG, Di HAN, Yan ZHANG, Xin ZHANG. Primary Halo Characteristics and Geological Significance of the Dongjianian Silver Deposit in Lingbao City,Henan Province [J]. Gold Science and Technology, 2020, 28(4): 497-508.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!