img

Wechat

Adv. Search

Gold Science and Technology ›› 2022, Vol. 30 ›› Issue (6): 848-865.doi: 10.11872/j.issn.1005-2518.2022.06.074

• Mineral Exploration and Resource Evaluation • Previous Articles     Next Articles

Trace Element Characteristics of Zircon and Apatite Metallogenic in Rocks of Hukeng Tungsten Deposit in Western Jiangxi Province:Implications for Petrogenesis and Mineralization

Hua WANG1(),Shaohao ZOU1(),Long CHEN2,Deru XU1,Xilian CHEN1,Xuena WANG1,Haodong FENG1   

  1. 1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China
    2.The Fourth Geological Brigade of Jiangxi Geological Bureau, Pingxiang 337000, Jiangxi, China
  • Received:2022-06-09 Revised:2022-09-13 Online:2022-12-31 Published:2023-01-06
  • Contact: Shaohao ZOU E-mail:wang_hua2021@163.com;shaohaozou@hotmail.com

Abstract:

The South China Block is an important polymetallic metallogenic area mainly related to the W,Sn,Cu and other metals,most of that mineralization is closely related to the Mesozoic magmatism.Based on the analysis of zircon U-Pb dating and trace element of apatite and zircon of the muscovite granite related to mineralization in the Hukeng tungsten deposit,the age,magmatic properties and evolution characteristics of the metallogenic rock was constraint in this study.The results show that the muscovite granite was formed at (152.3±1.73)Ma,which is consistent with the peak period of polymetallic mineralization in South China(170~150 Ma).In addition,trace element of apatite shows that it has a M-shaped REE chondrite normalized pattern,with features of enrich in F[w(F) is 3.52%~4.09%)]and Mn(5 081×10-6~13 948×10-6),and depleted in Cl[w(Cl)<0.012%] and Mg(5.91×10-6~24.08×10-6),which are consistent with that in the high fractionated S-type granite.Besides,trace element of zircon shows that it has high Th/U ratio,LREE-depleted and HREE-enriched REE chondrite normalized pattern.Furthermore,the oxidized state and temperature of the rock were constraint by Ce,U and Ti content in zircon,which shows that zircon was crystallized at the conditions of high temperature(800 ℃) and low oxygen fugacity in the early period of magma.Combined with previous studies,it is concluded that the Hukeng granite experienced strong early fractional crystallization and the formation of the Hukeng deposit may be related to the evolution of reductive highly fractionated magmas.

Key words: zircon, apatite, U-Pb dating, trace element, ore-forming magma, Hukeng tungsten deposit

CLC Number: 

  • P618.67

Fig.1

Geological map of the Wugongshan metallogenic belt(modified after Li et al.,2018)"

Fig.2

Geological diagram of Hukeng tungsten deposit(modified after Zhang,2009)"

Fig.3

Hand specimens and microscopic photos of muscovite granite in Hukeng tungsten deposit"

Fig.4

Zircon CL images and U-Pb analysis point location of muscovite granite in Hukeng tungsten deposit"

Table 1

LA-ICP-MS U-Pb dating results of the zircon from muscovite granite in Hukeng tungsten deposit"

测点编号

Th

/(×10-6

U

/(×10-6

Th/U207Pb/206Pb207Pb/235U206Pb/238U207Pb/206Pb207Pb/235U206Pb/238U
比值1s%比值1s%比值1s%年龄/Ma1s%年龄/Ma1s%年龄/Ma1s%
21HK01-4-1265.52810.940.05522.7870.16820.6600.0244.002777.75.725145.20.557150.20.119
21HK01-4-374.941420.530.03625.5400.12625.2130.0254.8201631.43.730107.20.532158.00.150
21HK01-4-4212.62710.780.05315.6510.17815.2860.0253.181853.54.395155.10.452157.10.099
21HK01-4-7236.23340.710.04819.8150.16620.6350.0253.505564.07.182143.50.563157.00.109
21HK01-4-11240.63510.690.04513.7000.16513.9040.0232.719451.04.213147.80.387147.50.079
21HK01-4-15476.36440.740.07213.7320.23413.6670.0243.158596.56.397205.90.514153.00.096
21HK01-4-1996.421120.860.05229.7180.15425.2380.0235.0982494.16.116124.10.605149.50.151
21HK01-4-20141.61241.150.02650.8100.11744.5680.0237.3152210.97.66693.80.851147.20.213
21HK01-4-21188.32400.780.04618.4310.16118.4150.0243.2681013.64.640139.10.485150.90.098
21HK01-4-28293.72471.190.06624.2160.18921.7960.0244.8501237.96.560158.50.641151.70.145

Fig.5

U-Pb age concordia diagram of zircon from the muscovite granite in Hukeng tungsten deposit"

Table 2

LA-ICP-MS trace element analysis results of the zircon grains from muscovite granite in Hukeng tungsten deposit(×10-6)"

测点编号TiT/℃YNbLaCePrNdSmEuGdTbDyHoErTmYbLuHfTaUThPb
21HK01-4-1-1 22536.19-43.99-2.596.450.9228.279.02112.1436.56158.2037.3434268.8610 6439.35281.2265.527.08
21HK01-4-29.28807.281 7006.67-35.360.292.986.722.2839.6912.70158.1057.20242.3854.6248593.709 5501.29253.0212.623.92
21HK01-4-38.24794.798073.60-22.69-1.632.860.9619.126.0870.3226.71116.9826.2024751.5710 5192.64142.174.914.57
21HK01-4-4-1 0326.35-44.99-1.113.340.8820.216.6490.8335.42149.8734.9333264.5510 2862.13271.5212.627.30
21HK01-4-5-1 0653.36-27.080.161.915.211.5421.767.7398.9936.64154.5234.6431061.029 8161.04235.5130.325.86
21HK01-4-6-8634.64-20.99--2.721.3322.916.1379.8827.61114.2329.3625554.648 9040.99185.993.741.35
21HK01-4-7-1 30710.63-46.54-1.423.411.0726.299.26112.4245.94192.0345.6441381.1010 9673.58334.4236.233.74
21HK01-4-811.22827.692 69110.771.4665.360.634.578.593.2550.0218.31230.6089.99383.8590.28822160.239 4122.91416.4318.138.37
21HK01-4-9-2 7908.36-47.410.477.0113.954.2569.6322.92267.8896.59386.7288.29795152.7310 1662.46787.8491.583.15
21HK01-4-1020.77899.571 15619.09-2.620.192.605.600.3424.618.2493.9739.86180.7545.1140081.049 9302.09279.982.275.27
21HK01-4-11-1 3856.69-46.73-1.254.501.5228.629.19123.5046.14193.6548.4743885.1011 1932.49350.6240.635.74
21HK01-4-12-1 5584.14-4.68-2.333.850.2826.669.83137.7653.43247.9357.6052899.3811 3601.28404.6184.3110.04
21HK01-4-13-3 07312.68-67.620.619.4514.534.5090.6426.07306.41106.84424.2791.79797145.4710 2772.84458.9491.246.61
21HK01-4-1414.53856.761 1543.430.2620.200.403.235.702.0233.759.63111.0740.14163.4034.8931558.339 1971.21128.586.313.02
21HK01-4-15-2 24335.300.3058.29-2.466.320.9540.4715.78205.6775.45321.3775.60656120.0812 5088.81643.6476.362.69
21HK01-4-16-1 2727.24-29.11-1.274.080.7127.678.33113.9542.95187.7143.0838673.4711 1742.95403.7187.141.10
21HK01-4-17-3 34088.860.4946.580.512.6610.391.3159.6821.57284.47107.66466.49114.061108207.8914 77419.982817.8717.6274.37
21HK01-4-18-6402.41-25.11-1.792.340.8512.173.4953.4018.8297.5025.5625757.508 6750.78443.5309.548.41
21HK01-4-1914.10853.321 1902.46-26.600.174.455.942.1128.749.50110.3240.91192.1038.8233768.308 6570.78111.796.410.33
21HK01-4-2017.36877.661 2332.36-48.28-4.367.101.7734.9810.31112.0342.17198.9635.0831663.689 7290.92123.6141.611.52
21HK01-4-2115.66865.441 9317.39-44.550.164.226.412.2538.8413.17169.2965.01335.6264.39575113.728 9461.83240.5188.322.19
21HK01-4-2217.66879.769222.29-26.180.233.554.732.0021.637.4584.7931.05154.6829.9125852.149 0350.6984.681.28.63
21HK01-4-239.59810.691 6743.23-4.430.132.115.300.6933.6111.17136.8057.31303.9661.80564118.469 9261.24291.4118.387.39
21HK01-4-24-1 4193.17-4.140.162.112.730.2826.728.86117.4851.20274.8255.95514107.789 9761.36260.7101.368.81
21HK01-4-25-1 0473.95-31.530.061.725.661.2123.967.2592.9934.06172.5934.9131063.9110 7061.52274.9161.430.49
21HK01-4-26-1 1424.20-40.33-2.485.481.0527.177.7197.5136.79188.6335.7534169.1410 2501.39246.5164.730.19
21HK01-4-27-7671.45-21.52-1.503.361.2615.025.2366.4524.53119.6425.3424652.3910 0910.57176.0140.719.19
21HK01-4-2813.29846.511 8242.650.6128.860.628.208.813.2036.7712.19142.5958.69287.1865.47623129.098 2020.78246.6293.722.39

Fig.6

Chondrite-normalized REE patterns of the zircon(Shiqiao data from Wang et al.,2022)"

Table 3

EPMA analysis results of the apatite grains from muscovite granite in Hukeng tungsten deposit(%)"

测点编号CaOP2O5TiO2K2OMnOFClSO3SrOFeOThO2Y2O3Na2OMgOAl2O3Total
21HK01-4-0154.2141.08-0.0041.003.540.0040.0280.0040.010.0270.280.20-0.04098.94
21HK01-4-0454.3141.44-0.0080.543.830.0030.0120.007--0.180.12-0.00698.84
21HK01-4-0552.9441.50-0.0031.433.840.0120.026-0.030.0050.300.25--98.72
21HK01-4-0753.0941.65--1.483.620.0030.032-0.010.0350.380.210.008-98.98
21HK01-4-0853.8141.790.00-1.283.560.0010.0280.0120.030.0210.360.20-0.01099.61
21HK01-4-1052.9441.240.03-1.273.63-0.030-0.030.0080.490.230.013-98.39
21HK01-4-1154.9942.70--0.753.62---0.03-0.220.040.0040.001100.84
21HK01-4-1353.8942.110.010.0071.053.77-0.013-0.070.0190.340.150.0120.02299.87
21HK01-4-1454.2141.270.03-0.773.65-0.013-0.03-0.280.16-0.07398.94
21HK01-4-1552.9541.72--1.703.780.0040.0450.0120.020.0160.320.210.008-99.19
21HK01-4-1752.5342.220.01-2.343.520.003-0.0010.03-0.520.21--99.90
21HK01-4-1853.1741.75--1.643.540.0080.035---0.380.280.0010.00599.31
21HK01-4-1954.3143.220.02-0.674.090.0030.0230.0010.010.0180.260.17-0.007101.06
21HK01-4-2054.3341.52--0.983.93-0.020-0.030.0180.350.16-0.00799.70

Table 4

LA-ICP-MS trace element analysis results of the apatite grains from muscovite granite in Hukeng tungsten deposit(×10-6)"

测点编号NaMgMnFeGaAsSrYLaCePrNdSmEuGdTbDyHoErTmYbLuPbThU
21HK01-4-011 2908.48 59620315.30.0889.983 1863221 1892171 1391 087331 41221995810119219.39410.312.57.51.08
21HK01-4-021 64111.59 37335817.115.8771.844 1433761 5192701 3661 319231 7382881 11111218416.5625.412.717.32.95
21HK01-4-059718.36 191904.65.4084.442 094196843162947815201 02913951051816.9302.810.92.40.32
21HK01-4-061 3138.67 9022849.911.3592.432 8862861 1442101 1281 089271 5092328568312010.4403.713.44.80.65
21HK01-4-071 3046.88 56824410.315.9468.183 1082781 1682201 1591 146231 4732148608513210.4444.211.95.90.85
21HK01-4-081 0859.45 3672478.71.7472.252 5882369631891 003993221 291187681651038.3293.010.62.60.56
21HK01-4-105219.66 4011843.84.31108.821 5095835088574802151 09117455847574.5150.915.7--
21HK01-4-111 29810.68 84724310.24.7973.843 1422891 1512071 1011 147241 5342388898013010.3403.613.08.32.13
21HK01-4-131 91614.99 18022315.57.6358.804 5013601 4132621 3951 864222 6374221 41511115713.6473.212.618.25.72
21HK01-4-141 5459.37 9363196.91.2978.713 4933491 3332381 2941 269281 7802831 14111218916.1665.912.010.51.99
21HK01-4-151 5248.28 6533709.19.7473.973 6342981 2072381 2601 346231 7612751 0159515313.4484.910.94.20.71
21HK01-4-161 2347.55 44120411.65.37107.533 2562911 0661981 031941331 3022211 01011922824.411912.19.016.31.43
21HK01-4-171 3978.29 9633328.712.3690.453 3383071 1632271 2201 227271 5922208438113410.6424.014.34.41.00
21HK01-4-181 6528.37 86517510.8-65.894 2223871 4162561 2621 191221 6422761 12911720116.8716.812.427.63.81
21HK01-4-201 4597.38 31220314.01.5370.573 5143541 3482421 2771 175231 5682449479615813.1575.812.215.62.18
21HK01-4-219757.36 30734811.235.5383.942 9633951 3352301 170981271 33121394410621420.5938.69.831.42.14
21HK01-4-221 46424.113 9481 01116.011.9571.543 3943111 2922601 2861 549232 043301969821229.7403.516.64.50.64
21HK01-4-248515.96 6932764.03.5261.731 9642239741891 0217631282610340739655.9272.59.52.0-
21HK01-4-251 60612.612 55065513.88.0498.064 2463561 3872561 3091 498272 0483131 22111418815.7575.019.45.60.49
21HK01-4-261 5578.5638616512.119.3780.663 7563251 3492441 3041 306251 7442741 13311420318.6747.511.347.43.79
21HK01-4-271 2878.56 317839.20.9178.692 7052901 1922231 1191 090251 418211808761218.6353.012.716.82.23
21HK01-4-281 6008.86 96617612.29.9178.523 5123791 3842501 2451 231351 6772861 24013524320.7958.612.236.83.35
21HK01-4-301 3457.55 08113710.83.2869.622 9843061 1782191 1211 049201 4002158428313711.4453.710.122.83.36
20HK01-4-312 1279.07 92527517.210.5071.935 0815632 0363441 6241 575272 0783541 49216229529.313012.511.345.05.59

Fig.7

Chondrite-normalized REE patterns of the apatite"

Fig.8

Apatite Sr-Nd/Nd* ratio(a)(base map modified after Zhang,2020) and apatite Ce-Y ratio(b)(base map modified after Laurent et al.,2017) of Hukeng tungsten deposit"

Fig.9

Zircon oxygen fugacity buffer discrimination diagram(a)(base map modified after Trail et al.,2012) and zircon FMQ-T ratio(b)(Shiqiao data from Wang et al.,2022)"

Bea F, Pereira M D, Stroh A,1994.Mineral/leucosome trace-element partitioning in a peraluminous migmatite (a laser ablation-ICP-MS study)[J].Chemical Geology,117(1/2/3/4):291-312.
Belousova E A, Griffin W L, O’Reilly S Y,et al,2002a.Apatite as an indicator mineral for mineral exploration:Trace-element compositions and their relationship to host rock type[J].Journal of Geochemical Exploration,76(1):45-69.
Belousova E A, Griffin W L, O’Reilly S Y,et al,2002b.Igneous zircon:Trace element composition as an indicator of source rock type[J].Contributions to Mineralogy and Petrology,143(5):602-622.
Belousova E A, Kostitsyn Y A, Griffin W L,et al,2010.The growth of the continental crust:Constraints from zircon Hf-isotope data[J].Lithos,119(3/4):457-466.
Bureau of Geology and Mineral Exploration and Development of Jiangxi Province,1984.The Reginal Geology of Jiangxi,China[M].Beijing:Geological Publishing House.
Bureau of Geology and Mineral Exploration and Development of Jiangxi Province,2014.The Mineral Geological Records of China—Volume of Jiangxi Province[M].Beijing:Geological Publishing House.
Cao M, Li G, Qin K,et al,2012.Major and trace element characteristics of apatites in granitoids from Central Kazakhstan:Implications for petrogenesis and mineralization[J].Resource Geology,62(1):63-83.
Chappell B W, White A J R,1992.I- and S-type granites in the Lachlan Fold Belt[J].Earth and Environmental Science Transactions of the Royal Society of Edinburgh,83(1/2):1-26.
Chappell B W, White A J R,2001.Two contrasting granite ty-pes:25 years later[J].Australian Journal of Earth Sciences,48(4):489-499.
Chen B, Ma X, Wang Z,2014.Origin of the fluorine-rich highly differentiated granites from the Qianlishan composite plutons (South China) and implications for polymetallic mineralization[J].Journal of Asian Earth Sciences,93:301-314.
Chen Maohong, Zhang Wei, Xiang Junfeng,et al,2009.Characteristics of the ore bearing ductile shear zones at Hukeng tungsten deposit and 40Ar-39Ar geochronological constraints[J].Journal of Guilin University of Technology,29(2):195-206.
Chen X, Huang W, Chen L,et al,2021.Controlling factors of different Late Cretaceous granitoid-related mineralization between western margin of the Yangtze Block and the nei-ghbor Yidun arc[J].Ore Geology Reviews,139:104554.
Chen Yuchuan, Wang Denghong,2012.Four main topics concerning the metallogeny related to Mesozoic magmatism in South China[J].Geotectonica et Metallogenia,36(3):315-321.
Doherty A L, Webster J D, Goldoff B A,et al,2014.Partitioning behavior ofchlorine and fluorine in felsic melte-fluid (s)-apatite systems at 50 MPa and 850-950 ℃[J].Chemical Geology,384:94-111.
Ferry J M, Watson E B,2007.New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers[J].Contributions to Mineralogy and Petrology,154(4):429-437.
Guo Lingzhi, Shi Yangshen, Ma Ruishi,1983.On the formation and evolution of the Mesozoic-Cenozoic active continental margin and island arc tectonics of the Western Pacific Ocean[J].Acta Geologica Sinica,(1):11-21.
Guo Lingzhi, Shi Yangshen, Ma Ruishi,et al,1984.Tectonostratigraphic Terranes of Southeast China[J].Journal of Nanjing University(Natural Science),(4):732-739.
Han Li, Huang Xiaolong, Li Jie,et al,2016.Oxygen fugacity variation recorded in apatite of the granite in the Dahutang tungsten deposit,Jiangxi Province,South China[J].Acta Petrologica Sinica,32(3):746-758.
Hoskin P W O,2005.Trace-element composition of hydrothermal zircon and the alteration of Hadean zircon from the Jack Hills,Australia[J].Geochimica et Cosmochimica Acta,69(3):637-648.
Hoskin P W O, Schaltegger U,2003.The composition of zircon and igneous and metamorphic petrogenesis[J].Reviews in Mineralogy and Geochemistry,53(1):27-62.
Irber W,1999.The lanthanide tetrad effect and its correlation with K/Rb,Eu/Eu∗,Sr/Eu,Y/Ho,and Zr/Hf of evolving peraluminous granite suites[J].Geochimica et Cosmochimica Acta,63(3/4):489-508.
Jia J, Du X, Zhao K,et al,2022.Sources of K-bentonites across the Ordovician-Silurian transition in South China:Implications for tectonic activities on the northern and southern margins of the South China Block[J].Marine and Petroleum Geology,139:105599.
Keppler H, Wyllie P J,1991.Partitioning of Cu,Sn,Mo,W,U,and Th between melt and aqueous fluid in the systems haplogranite-H2O- HCl and haplogranite-H2O- HF[J].Contributions to Mineralogy and Petrology,109(2):139-150.
Laurent O, Zeh A, Gerdes A,et al,2017.How do granitoid magmas mix with each other? Insights from textures,trace element and Sr-Nd isotopic composition of apatite and titanite from the Matok pluton(South Africa)[J].Contributions to Mineralogy and Petrology,172(9):1-22.
Li H, Zhang H, Ling M X,et al,2011.Geochemical and zircon U-Pb study of the Huangmeijian A-type granite:Implications for geological evolution of the Lower Yangtze River belt[J].International Geology Review,53(5/6):499-525.
Li J L, Schwarzenbach E M, John T,et al,2021a.Subduction zone sulfur mobilization and redistribution by intraslab fluid-rock interaction[J].Geochimica et Cosmochimica Acta,297:40-64.
Li J, Huang X L, Fu Q,et al,2021b.Tungsten mineralization during the evolution of a magmatic-hydrothermal system:Mineralogical evidence from the Xihuashan rare-metal granite in South China[J].American Mineralogist:Journal of Earth and Planetary Materials,106(3):443-460.
Li W, Chakraborty S, Nagashima K,et al,2020.Multicomponent diffusion of F,Cl and OH in apatite with application to magma ascent rates[J].Earth and Planetary Science Letters,550:116545.
Li X, Yi X, Huang C,et al,2018.Zircon U-Pb,molybdenite Re-Os and muscovite Ar-Ar geochronology of the Yashan W-Mo and Xiatongling W-Mo-Be deposits:Insights for the duration and cooling history of magmatism and mineralization in the Wugongshan district,Jiangxi,South China[J].Ore Geology Reviews,102:1-17.
Liu J, Mao J, Ye H,et al,2011.Geology,geochemistry and age of the Hukeng tungsten deposit,southern China[J].Ore Geology Reviews,43(1):50-61.
Liu Jun, Mao Jingwen, Ye Huishou,et al,2008a.Zircon LA-ICPMS U-Pb dating of Hukeng granit in Wugongshan area,Jiangxi Province and its geochemical characteristics[J].Acta Petrologica Sinica,24(8):1813-1822.
Liu Jun, Xie Guiqing, Shi Guodong,et al,2010.Characteristics of ore-forming fluid of Hukeng tungsten deposit in Wugongshan area[J].Mineral Deposit,29(Supp.1):589-590.
Liu Jun, Ye Huishou, Xie Guiqing,et al,2008b.Re-Os dating of molybdenite from the Hukeng tungsten deposit in the Wugongshan area,Jiangxi Province,and its geological implications[J].Acta Geologica Sinica,(11):1572-1579.
Liu Y, Gao S, Hu Z,et al,2010.Continental and oceanic crust recycling-induced melt-peridotite interactions in the Trans-North China Orogen:U-Pb dating,Hf isotopes and trace elements in zircons from mantle xenoliths[J].Journal of petrology,51(1/2):537-571.
Loader M A, Nathwani C L, Wilkinson J J,et al,2022.Controls on the magnitude of Ce anomalies in zircon[J].Geochimica et Cosmochimica Acta,328:242-257.
Loader M A, Wilkinson J J, Armstrong R N,2017.The effect of titanite crystallisation on Eu and Ce anomalies in zircon and its implications for the assessment of porphyry Cu deposit fertility[J].Earth and Planetary Science Letters,472:107-119.
Lou Fasheng, Shu Liangshu, Yu Jinhai,et al,2002.Petrological and geochemical characteristics and origin of the Wugongshan Dome Granit,Jiangxi Province[J].Geological Review,(1):80-88.
Loucks R R, Fiorentini M L, Henríquez G J,2020.New magmatic oxybarometer using trace elements in zircon[J].Journal of Petrology,61(3):egaa034.
Mao J, Liu P, Goldfarb R J,et al,2021.Cretaceous large-scale metal accumulation triggered by post-subductional large-scale extension,East Asia[J].Ore Geology Reviews,136:104270.
Mao J, Pirajno F, Cook N,2011.Mesozoic metallogeny in East China and corresponding geodynamic settings—An introduction to the special issue[J].Ore Geology Reviews,43(1):1-7.
Mao J, Xiong B, Liu J,et al,2017.Molybdenite Re/Os dating,zircon U-Pb age and geochemistry of granitoids in the Yangchuling porphyry W-Mo deposit (Jiangnan tungsten ore belt),China:Implications for petrogenesis,mineralization and geodynamic setting[J].Lithos,286:35-52.
Mao Jingwen, Xie Guiqing, Guo Chunli,et al,2008.Spatial-temporal distribution of Mesozoic ore deposits in South China and their metallogenic settings[J].Geological Journal of China Universities,14(4):510-526.
Mao M, Rukhlov A S, Rowins S M,et al,2016.Apatite trace element compositions:A robust new tool for mineral exploration[J].Economic Geology,111(5):1187-1222.
Marks M A W, Scharrer M, Ladenburger S,et al,2016.Comment on“Apatite:A new redox proxy for silicic magmas?”[Geochimica et Cosmochimica Acta 132 (2014) 101-119][J].Geochimica et Cosmochimica Acta,183:267-270.
Marks M A W, Wenzel T, Whitehouse M J,et al,2012.The volatile inventory (F,Cl,Br,S,C) of magmatic apatite:An integrated analytical approach[J].Chemical Geology,291:241-255.
Miles A J, Graham C M, Hawkesworth C J,et al,2014.Apatite:A new redox proxy for silicic magmas?[J].Geochimica et Cosmochimica Acta,132:101-119.
O’Sullivan G, Chew D, Kenny G,et al,2020.The trace element composition of apatite and its application to detrital provenance studies[J].Earth-Science Reviews,201:103044.
Pan Y, Fleet M E,2002.Compositions of the apatite-group minerals:Substitution mechanisms and controlling factors[J].Reviews in Mineralogy and Geochemistry,48(1):13-49.
Piccoli P M, Candela P A,2002.Apatite in igneous systems[J].Reviews in Mineralogy and Geochemistry,48(1):255-292.
Qu P, Li N B, Niu H C,et al,2019.Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range,NE China[J].Lithos,348:105207.
Qu P, Niu H C, Weng Q,et al,2022.Apatite and zircon geochemistry for discriminating ore-forming intrusions in the Luming giant porphyry Mo deposit,northeastern China[J].Ore Geology Reviews,143:104771.
Ren Jishun,1990.On the geotectonics of southern China[J].Acta Geologica Sinica,(4):275-288.
Sadove G, Konecke B A, Fiege A,et al,2019.Structurally bound S2-,S1-,S4+,S6+ in terrestrial apatite:The redox evolution of hydrothermal fluids at the Phillips mine,New York,USA[J].Ore Geology Reviews,107:1084-1096.
Schaltegger U, Pettke T, Audétat A,et al,2005.Magmatic-to-hydrothermal crystallization in the W-Sn mineralized Mole Granite (NSW,Australia):Part I:Crystallization of zircon and REE-phosphates over three million years—A geochemical and U-Pb geochronological study[J].Chemical Geology,220(3/4):215-235.
Sha L K, Chappell B W,1999.Apatite chemical composition,determined by electron microprobe and laser-ablation inductively coupled plasma mass spectrometry,as a probe into granite petrogenesis[J].Geochimica et Cosmochimica Acta,63(22):3861-3881.
Shi Yangshen, Shu Liangshu, Guo Lingzhi,et al,1995.On Plate Collision KIinematics:Taking the Jiangnan and the Eastern Tianshan Orogenic Belts as Examples[J].Geological Journal of China Universities,(1):11-21.
Shu Liangshu,2012.An analysis of principal features of tectonic evolution in South China Block[J].Geological Bulletin of China,31(7):1035-1053.
Shu Liangshu, Sun Yan, Wang Dezi,et al,1998.Mesozoic extensional structure of Wugongshan in South China[J].Science in China(Series D:Earth Sciences),(5):431-438.
Song Z T, Xu X S,2022.Petrogenesis of high-maficity S-type granites:Insight from the early Paleozoic Jinxi granite,South China[J].Lithos,412/413:106597.
Stepanov A S, Hermann J, Rubatto D,et al,2012.Experimental study of monazite/melt partitioning with implications for the REE,Th and U geochemistry of crustal rocks[J].Chemical Geology,300:200-220.
Su S Q, Qin K Z, Li G M,et al,2021.Constraints on scheelite genesis at the Dabaoshan stratabound polymetallic deposit,South China[J].American Mineralogist:Journal of Earth and Planetary Materials,106(9):1503-1519.
Sun J F, Yang J H, Zhang J H,et al,2021.Apatite geochemical and Sr-Nd isotopic insights into granitoid petrogenesis[J].Chemical Geology,566:120104.
Sun S S, McDonough W F,1989.Chemical and isotopic systematics of oceanic basalts:Implications for mantle composition and processes[J].Geological Society,London,Special Publications,42(1):313-345.
Teiber H, Marks M A W, Wenzel T,et al,2014.The distribution of halogens (F,Cl,Br) in granitoid rocks[J].Chemical Geology,374:92-109.
Trail D, Watson E B, Tailby N D,2012.Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas[J].Geochimica et Cosmochimica Acta,97:70-87.
Vermeesch P,2018.IsoplotR:A free and open toolbox for geochronology[J].Geoscience Frontiers,9(5):1479-1493.
Virgo D, Mysen B O, Kushiro I,1980.Anionic constitution of 1-atmosphere silicate melts:Implications for the structure of igneous melts[J].Science,208(4450):1371-1373.
Wang D, Shu L,2012.Late Mesozoic basin and range tectonics and related magmatism in southeast China[J].Geoscience Frontiers,3(2):109-124.
Wang D, Wang X L, Cai Y,et al,2022.Exploring the Sn-W metallogenic potential of Late Jurassic Ganfang-Guyangzhai granite suite,South China:Zircon and apatite geochemistry[J].Ore Geology Reviews,144:104863.
Wang H Z, Chen P R, Sun L Q,et al,2015.Magma mixing and crust-mantle interaction in Southeast China during the Early Cretaceous:Evidence from the Furongshan granite porphyry and mafic microgranular enclaves[J].Journal of Asi-an Earth Sciences,111:72-87.
Wang T, Li G, Wang Q,et al,2019.Petrogenesis and metallogenic implications of Late Cretaceous I-and S-type granites in Dachang-Kunlunguan ore belt,southwestern South China Block[J].Ore Geology Reviews,113:103079.
Watson E B, Green T H,1981.Apatite/liquid partition coefficients for the rare earth elements and strontium[J].Earth and Planetary Science Letters,56:405-421.
Webster J D, Tappen C M, Mandeville C W,2009.Partitioning behavior of chlorine and fluorine in the system apatite-melt-fluid.II.Felsic silicate systems at 200 MPa[J].Geochimica Cosmochimica Acta,73(3):559-581.
Wu Fujiang, Zhang Fangrong,2003.Features and genesis of Caledonian granites in the Wugongshan in the eastern segment of the northern maring of South China plate[J].Geology in China,(2):166-172.
Xing C M, Wang C Y,2017.Cathodoluminescence images and trace element compositions of fluorapatite from the Hongge layered intrusion in SW China:A record of prolonged crystallization and overprinted fluid metasomatism[J].American Mineralogist:Journal of Earth and Planetary Materials,102(7):1390-1401.
Xing K, Shu Q, Lentz D R,et al,2020.Zircon and apatite geochemical constraints on the formation of the Huojihe porphyry Mo deposit in the Lesser Xing’an Range,NE China[J].American Mineralogist:Journal of Earth and Planetary Materials,105(3):382-396.
Xu W C, Luo B J, Xu Y J,et al,2018.Geochronology,geochemistry,and petrogenesis of late Permian to early Triassic mafic rocks from Darongshan,South China:Implications for ultrahigh-temperature metamorphism and S-type granite generation[J].Lithos,308:168-180.
Yan J, Liu X, Wang S,et al,2021.Metallogenic type controlled by magma source and tectonic regime:Geochemical comparisons of Mesozoic magmatism between the Middle-Lower Yangtze River Belt and the Dabie Orogen,eastern China[J].Ore Geology Reviews,133:104095.
Zhang Shaoli, Wang Liankui, Zhu Weifang,et al,1985.Use of REE in apatites to distinguish the petrogeno-minerlization series of granitic rocks[J].Geochemica,(1):45-57.
Zhang Wei,2009.The Geological Features and Evolution of Metallogenic Tectonics of the Ore Bearing Quartz Veins at Hukeng Tungsten Deposit,Jiangxi Province[D].Beijing:China University of Geosciences(Beijing).
Zhang Xiaobing,2020.Source,Magmatic Evolution and Hydrothermal Fluid Activity of Cretaceous Granites in the Coastal Region of SE China:Records from Apatite Geochemistry[D].Guangzhou:Guangzhou Institute of Geochemistry,Chinese Academy of Sciences.
Zhang Y, Ma D, Gao J F,2020.Origin and evolution of ore-forming fluids in a tungsten mineralization system,Middle Jiangnan orogenic belt,South China:Constraints from in-situ LA-ICP-MS analyses of scheelite[J].Ore Geology Reviews,127:103806.
Zhao W W, Zhou M F, Williams-Jones A E,et al,2018.Constraints on the uptake of REE by scheelite in the Baoshan tungsten skarn deposit,South China[J].Chemical Geology,477:123-136.
Zhou X, Sun T, Shen W,et al,2006.Petrogenesis of Mesozoic granitoids and volcanic rocks in South China:A response to tectonic evolution[J].Episodes,29(1):26.
Zhou Xinmin,2003.My thinking about granite geneses of South China[J].Geological Journal of China Universities,(4):556-565.
陈懋弘,章伟,向君峰,等,2009.江西浒坑钨矿含矿韧性剪切带及其40Ar-39Ar年代学约束[J].桂林工学院学报,29(2):195-206.
陈毓川,王登红,2012.华南地区中生代岩浆成矿作用的四大问题[J].大地构造与成矿学,36(3):315-321.
郭令智,施央申,马瑞士,1983.西太平洋中、新生代活动大陆边缘和岛弧构造的形成及演化[J].地质学报,(1):11-21.
郭令智,施央申,马瑞士,等,1984.中国东南部地体构造的研究[J].南京大学学报(自然科学版),(4):732-739.
韩丽,黄小龙,李洁,等,2016.江西大湖塘钨矿花岗岩的磷灰石特征及其氧逸度变化指示[J].岩石学报,32(3):746-758.
江西省地质矿产勘查开发局,1984.江西省区域地质志[M].北京:地质出版社.
江西省地质矿产勘查开发局,2014.中国矿产地质志·江西卷[M].北京:地质出版社.
刘珺,毛景文,叶会寿,等,2008a.江西省武功山地区浒坑花岗岩的锆石U-Pb定年及元素地球化学特征[J].岩石学报,24(8):1813-1822.
刘珺,谢桂青,施国栋,等,2010.武功山地区浒坑钨矿床成矿流体特征[J].矿床地质,29(增1):589-590.
刘珺,叶会寿,谢桂青,等,2008b.江西省武功山地区浒坑钨矿床辉钼矿Re-Os年龄及其地质意义[J].地质学报,(11):1572-1579.
楼法生,舒良树,于津海,等,2002.江西武功山穹隆花岗岩岩石地球化学特征与成因[J].地质论评,(1):80-88.
毛景文,谢桂青,郭春丽,等,2008.华南地区中生代主要金属矿床时空分布规律和成矿环境[J].高校地质学报,14(4):510-526.
任纪舜,1990.论中国南部的大地构造[J].地质学报,(4):275-288.
施央申,舒良树,郭令智,等,1995.论板块碰撞运动学研究──以江南和东天山造山带为例[J].高校地质学报,(1):11-21.
舒良树,2012.华南构造演化的基本特征[J].地质通报,31(7):1035-1053.
舒良树,孙岩,王德滋,等,1998.华南武功山中生代伸展构造[J].中国科学(D辑:地球科学),(5):431-438.
吴富江,张芳荣,2003.华南板块北缘东段武功山加里东期花岗岩特征及成因探讨[J].中国地质,(2):166-172.
张绍立,王联魁,朱为方,等,1985.用磷灰石中稀土元素判别花岗岩成岩成矿系列[J].地球化学,(1):45-57.
张晓兵,2020.中国东南沿海白垩纪花岗岩起源、演化和流体作用的磷灰石地球化学研究[D].广州:中国科学院广州地球化学研究所.
章伟,2009.江西浒坑钨矿含矿石英脉地质特征及其构造演化[D].北京:中国地质大学(北京).
周新民,2003.对华南花岗岩研究的若干思考[J].高校地质学报,(4):556-565.
[1] Bin WANG, Mingchun SONG, Zhining LIU, Jian LI, Leilei DONG, Yiduo ZHANG, Lei JIANG, Runsheng WANG, Xiaotao DONG, Jialiang LIU. Geochronology,Geochemical Characteristics and Tectonic Implications of Early Cretaceous Zhouguan High-Mg Diorite Rock Mass in the Jiaodong Peninsula [J]. Gold Science and Technology, 2024, 32(5): 798-812.
[2] Xiaoping ZHOU, Mingchun SONG, Xiangdong LIU, Chunming YAN, Zhaojun HU, Haigang SU, Bingqian HU, Yikang ZHOU. Formation Age,Petrogenesis,and Implications for Gold Mineralization of Giant Porphyritic Granite in the Sanshandao Gold Deposit in Jiaodong [J]. Gold Science and Technology, 2024, 32(5): 813-829.
[3] Mingying TANG, Honglei ZHAN, Jian CHEN, Wei ZHU, Weidong LEI, Xin WANG, Zhengjiang DING, Shuangfei LI, Zheng MU. Distribution Characteristics and Geological Significance of Trace Elements of Sulfides in Qibaoshan Pb-Zn Polymetallic Deposit in Wulian,Shandong Province [J]. Gold Science and Technology, 2024, 32(5): 830-846.
[4] Yan YANG, Zengbao HUANG, Xiaogang GUO, Yanlong XU, Hua YAN. Zircon U-Pb Age and Geochemical Characteristics of Granodiorite Porphyry Veins in Yushugoushan Gold Deposit,Northern Qilian Mountain,and Its Geological Significance [J]. Gold Science and Technology, 2024, 32(3): 387-399.
[5] Fenglong LIU, Jia’en WANG, Yuandong LIU, Dahai SUN, Haiyan CHENG, Yanhua HU, Wen HUANG, Zhen WANG, Shaojun PAN. Geochronology and Geochemistry Characteristics of Jiuhuashan Intrusion Rocks in Quzhou,Zhejiang Province [J]. Gold Science and Technology, 2024, 32(1): 31-40.
[6] Wenwei CUI,Huixia CHAO,Hujun HE,Xingke YANG,Junjie YANG,Haolei ZHU,Xu WU. Element Geochemical Characteristics and Significance of Ore,Wall Rock and Stratum in Fuwen Gold Deposit,Hainan [J]. Gold Science and Technology, 2023, 31(3): 423-432.
[7] Linlin LIU,Jun CHEN,Zaifeng YANG,Lijuan DU,Yanbing JI,Lulin ZHENG. Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits [J]. Gold Science and Technology, 2023, 31(2): 219-231.
[8] Bo LI,Shaohao ZOU,Deru XU,Xilian CHEN,Xuena WANG,Hua WANG. Composition Characteristics of Garnet in Xintianling Skarn-type Scheelite Deposit,South Hunan Province and Its Implications for the Tungsten Mineralization [J]. Gold Science and Technology, 2023, 31(2): 232-251.
[9] Yong ZHANG,Aikui ZHANG,Shuyue HE,Zhigang LIU,Yongle LIU,Peng ZHANG,Feifei SUN. Age,Petrogenesis and Tectonic Significance of Granodiorite in Kudeerte Gold Deposit,Qimantage Area,East Kunlun [J]. Gold Science and Technology, 2023, 31(1): 1-14.
[10] Gaizhong LIANG,Kuifeng YANG,Hongrui FAN,Xinghui LI. Genesis of Colloidal Pyrite and Its Metallogenic Significance in Asiha Gold Deposit,East Kunlun [J]. Gold Science and Technology, 2022, 30(1): 19-33.
[11] Xiaopeng CHI,Jiayan XU,Shuiping ZHONG,Xiuhua CHEN. Research Progress of Microalloyed Gold-based Materials [J]. Gold Science and Technology, 2022, 30(1): 141-150.
[12] Ying LUO,Yingxiang LU,Xuelong LIU,Shunrong XUE,Shuaishuai WANG,Zhenhuan LI,Changzhen ZHANG,Jianhang CHEN. Geochemical Characteristics,Zircon U-Pb Age and Geochronological Significance of Diabase in Heiniu’ao Gold Deposit,Baoshan Block,Western Yunnan [J]. Gold Science and Technology, 2020, 28(1): 1-11.
[13] Ziqi XIONG, Xiling LIU, Zhixian LI, Weiya LI, Xing ZENG. Solidification Effect of Two Curing Agents on Heavy Metals in Xiangtan Manganese Mine Area Soil [J]. Gold Science and Technology, 2019, 27(5): 762-769.
[14] Man YU, Pengfei DI. Baddeleyite U-Pb Geochronology and Tectonic Significance of the Gabbro in Kalamaili, Eastern Junggar [J]. Gold Science and Technology, 2019, 27(5): 678-686.
[15] Yumin CHEN, Huafeng ZHANG, Congying ZHANG, Huanlong HU, Zhaokun WANG, Qingdong ZENG, Hongrui FAN. Pyrite Typomorphic Characteristics:Implication for Deep Gold Mineralization in the Sanshandao Gold Deposit,Jiaodong Peninsula [J]. Gold Science and Technology, 2019, 27(5): 637-647.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!