img

Wechat

Adv. Search

Gold Science and Technology ›› 2023, Vol. 31 ›› Issue (2): 331-339.doi: 10.11872/j.issn.1005-2518.2023.02.091

• Mining Technology and Mine Management • Previous Articles     Next Articles

Determination of Blasting Parameters for Excavation and Cutting of Small Section Roadways Based on Orthogonal Experiments

Yifeng ZHANG1(),Hongchao LI1,2(),Zhiyu ZHANG3,Heng LI1   

  1. 1.Faculty of Public Security and Emergency Management, Kunming University of Science and Technology, Kun -ming 650093, Yunnan, China
    2.City College, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
    3.Faculty of Land Resources Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China
  • Received:2022-07-13 Revised:2022-10-28 Online:2023-04-30 Published:2023-04-27
  • Contact: Hongchao LI E-mail:zyf18750304712@163.com;34031826@qq.com

Abstract:

In order to improve the utilization rate of blastholes in small section tunnels in a tin mine in Yunnan Province and reduce the unit consumption of explosives,after analysis,it is determined that the four factors of the charge amount,the distance between the charge hole and the empty hole,the hole diameter and the filling length are the test factors.The blast hole utilization rate and the cavity volume are the test indicators,and each factor takes 3 levels.Using the method of repeated orthogonal experiments,the effects of four different factors,namely,the charge amount,the distance between the charge hole and the empty hole,the hole diameter and the packing length,on the blasting hole utilization rate and the cavity volume were studied through the range analysis and variance analysis.The significance of the influence of each test index determine the optimal com-bination of test factors.The research results show that in the range analysis,the distance between the charge hole and the empty hole has the greatest influence on the utilization rate of the undercut blasting hole,followed by the hole diameter,the charge amount is smaller,and the filling length has the least influence. The hole diameter has the largest impact on the groove volume,the distance between the charging hole and the empty hole is second,the packing length is smaller,and the charging amount has the smallest influence.In the variance analysis,the distance between the charge hole and the empty hole has a very significant effect on the blast hole utilization rate,the hole diameter has a significant effect on the blast hole utilization rate,and the charge amount and packing length have no significant effect on the blast hole utilization rate.The hole diameter has a very significant influence on the volume of the cavity,the distance between the charging hole and the empty hole has a significant effect on the volume of the cavity,and the significant effect of the packing length on the volume of the cavity is slightly weaker than the distance between the charging hole and the empty hole.The amount has the least significant effect on the cavity volume.Therefore,for small section roadway excavation,when the hole diameter is 70 mm,the distance between the charge hole and the empty hole is 10 cm,the charge amount is 3 kg,and the mud filling length is 20 cm,the undercut can achieve excellent blasting effect.After several on-site roadway excavation tests,the blasthole utilization rate can be increased from 80% to more than 93%.

Key words: small section roadway, straight hole cut, field test, orthogonal test, range analysis, variance analysis

CLC Number: 

  • TD236

Fig.1

Prism vertical cutting scheme"

Fig.2

Optimized prism vertical cutting scheme"

Table 1

Rock mechanical properties parameter"

岩性抗压强度/MPa抗拉强度/MPa纵波波速/(m·s-1横波波速/(m·s-1动弹性模量/MPa密度/(g·cm-3动剪切模量/MPa
大理岩60.36.625 2682 98960 913.872.7024 122.13
氧化矿72.34.824 8323 22158 866.192.4122 178.66

Table 2

Factor level table of orthogonal test"

水平号因素列
ABCD
2.753520
3.0105030
3.6157040

Table 3

Design table of orthogonal experiment"

试验序号因素列
ABCD
12.753520
22.7105030
32.7157040
43.055040
53.0107020
63.0153530
73.657030
83.6103540
93.6155020

Fig.3

In site shot hole layout in experiment 8"

Fig.4

Cutting and blasting effect in experiment 8"

Fig.5

In site shot hole layout in experiment 6"

Fig.6

Cutting and blasting effect in experiment 6"

Table 4

Orthogonal experiment results of prism vertical cutting"

试验序号因素列各指标2组试验结果
ABCD炮孔利用率Bu/%槽腔体积Vc/m3
12.75352076780.110.1
22.710503081800.130.12
32.715704065750.100.12
43.05504090880.120.13
53.010702094930.170.16
63.015353050610.060.05
73.65703096950.150.13
83.610354070700.070.06
93.615502059700.100.11

Table 5

Analysis of positive difference of blast hole utilization range"

目标参数试验指标
KijABCD
炮孔利用率Ki1455523405470
Ki2476488468463
Ki3460380518458
k i175.887.767.578.3
k i279.381.378.077.2
k i376.763.386.376.3
极差R3.524.018.82.0
因素主次顺序BCAD
最优水平组合B1C3A2D1

Table 6

Analysis of positive difference of slot cavity"

目标参数试验指标
KijABCD
槽腔体积Ki10.670.710.440.75
Ki20.700.720.710.62
Ki30.600.540.820.60
k i10.1120.1180.0730.125
k i20.1170.1200.1180.103
k i30.1000.0900.1370.100
极差R0.0170.0300.0640.025
因素主次顺序CBDA
最优水平组合C3B2D1A2

Table 7

Variance analysis of blast hole utilization rate and cavity volumn ratio"

目标参数方差来源平方和自由度方差F值临界值显著性
炮孔利用率/槽腔体积因素ASAfA=r-1SAˉ=SA/?fAFA=SAˉ/SeˉF1-αfA,fe
因素BSBfB=r-1SBˉ=SB/?fBFB=SBˉ/SeˉF1-αfB,fe
??????
误差SefeSeˉ=Se/?fe
总和STfT=n-1

Table 8

Variance analysis of blast hole utilization rate"

目标参数方差来源平方和自由度方差F值临界值显著性
炮孔利用率因素A40.111220.0561.023

F0.10(2,9)=3.01

F0.05(2,9)=4.26

F0.01(2,9)=8.02

因素B1 852.1112926.05647.221****
因素C1 068.7782534.38927.249***
因素D12.11126.0560.309
误差e176.500919.611

Table 9

Variance analysis of cavity volume"

目标参数方差来源平方和自由度方差F值临界值显著性
槽腔体积因素A0.00087820.0004396.077

F0.10(2,9)=3.01

F0.05(2,9)=4.26

F0.01(2,9)=8.02

*
因素B0.00341120.00170623.615***
因素C0.01274420.00637288.231****
因素D0.00221120.00110615.308**
误差e0.00065090.000072

Table 10

Excavation cutting blast parameters"

名称编号

孔深

/m

装药

/m

填塞

/m

装药量/kg雷管段别联接方式
眼数单孔总药量
垂直掏槽孔11.61.20.211.21.21串联
大直径空孔2~31.6--2---
垂直掏槽孔4~51.60.90.220.91.83
掏槽辅助孔6~111.50.90.460.95.45

Fig.7

On-site blast hole layout of excavation cutting"

Fig.8

Blasting effect of excavation cutting"

Cao Xiaofan, Tang Yichuan, Deng Niandong,et al,2020.Aeolian sand paste filling material ratio based on repeated orthogonal test[J].Safety in Coal Mines,51(9):65-70.
Dai Jun, Yang Qiang, Li Chuanjing,et al,2018.Application of analytic hierarchy process to tunnel cutting blasting [J].Journal of Henan University of Science and Technology(Natural Science),39(4):67-72.
Du Lian, Zhao Mingsheng, Qi Puyan,et al,2020.Application of blasting funnel theory in slopeing forming control of slope[J].Mining Research and Development,40(9):18-22.
Hu Gang, Guo Zhiyu, Li Qingwen,2018.Study on factors affecting the explosibility of the coal gangue with orthogonal test[J].Non-Metallic Mines,41(5):31-33.
Jiang Fuliang, Zhang Shuai, Li Xiangyang,et al,2018.Experimental study on materials blending proportion for preparation of simulated uranium ore based on orthogonal design[J].Mining and Metallurgical Engineering,38(2):20-24.
Li Heng, Zhang Zhiyu, Li Xianglong,et al,2022.Sensitivity analysis of punching effect of water-bearing blast hole in open air based on orthogonal design[J].Nonferrous Metals Engineering,12(4):91-99.
Li Xianglong, Yang Changhui, Wang Jianguo,et al,2022.Parameter optimization of presplitting blasting based on model test[J].Chinese Journal of High Pressure Physics,36(2):190-196.
Liu Zhigang, Cao Anye, Jing Guangcheng,2018.Research on parameters optimization of stress relief blasting in coal roadway using orthogonal experiment [J].Journal of Mining and Safety Engineering,35(5):931-939.
Shan Renliang, Huang Baolong, Wei Zhenting,et al,2012.Model test of quasi-parallel cut blasting in rock drivage[J].Chinese Journal of Rock Mechanics and Engineering,31(2):256-264.
Sun Fei, Zhou Xiangyang, Jiang Xinzhong,et al,2016.Optimal design of shaped charge cutter used in blasting demolition of steel chimney[J].Engineering Blasting,22(6):48-54.
Sun Longhua, Yang Shuangsuo, Li Dachang,et al,2013.Research of the reasonable cutting method and blasting parameter in limestone drift excavation[J].Metal Mine,42(9):26-29.
Wen Tao, Tan Hai,2011.The empty hole effect numerical computation analysis during rock blasting[J].Blasting,28(3):58-61.
Wu Qinzheng, Li Runran, Li Guilin,et al,2021.Optimization of millisecond delay blasting time in open pit mine based on JKSimBlast software[J].Gold Science and Technology,29(6):854-862.
Yang J X, Liu C Y,2017.Experimental study and engineering practice of pressured water coupling blasting[J].Shock and Vibration,(1):1-12.
Yang R S, Gao X T, Liu G Q,et al,2012.The structure design of slit-charge for directional fracture controlled blasting in stone drifting [J].Advanced Materials Research,619:388-392.DOI:10.4028/www.scientific.net/AMR.619.388 .
doi: 10.4028/www.scientific.net/AMR.619.388
Yin Yuejiang, Li Ruize, Chen Ming,et al,2019.Sensitivity analysis of influencing factors of blasting fragmentation distribution based on orthogonal experiment method[J].Blasting,36(4):37-42.
Yu Bingbing, Wang Yanbing, Wang Baozhu,2021.Experimental study on over-slotting blasting of rock roadway in Gubei coal mine[J].Coal Engineering,53(11):113-119.
Yuan W, Su X B, Wang W E,et al,2019.Numerical study of the contributions of shock wave and detonation gas to crack generation in deep rock without free surfaces[J].Journal of Petroleum Science and Engineering,177:699-710.
Yuan Wenhua, Ma Qinyong, Huang Wei,2012.Model experiment and analysis of wedge-shaped cutting millisecond blasting[J].Chinese Journal of Rock Mechanics and Engineering,31(Supp.1):3352-3356.
Zhang H, Li T, Wu S,et al,2022.A study of innovative cut blasting for rock roadway excavation based on numerical simulation and field tests[J].Tunnelling and Underground Space Technology,119:104233.
Zhang Yufei,2018.Model Test Study on Confining Pressure Effect of Cut Blasting in High Geo-stress Rock Lane[D].Beijing:China University of Mining and Technology.
Zou B, Xu Z, Wang J,et al,2020.Numerical investigation on influential factors for quality of smooth blasting in rock tunnels[J].Advances in Civil Engineering,(4):1-17.
曹晓凡,唐亦川,邓念东,等,2020.基于重复正交试验的风积砂膏体充填材料配比[J].煤矿安全,51(9):65-70.
戴俊,杨强,李传净,等,2018.层次分析法在隧道掏槽爆破中的应用[J].河南科技大学学报(自然科学版),39(4):67-72.
杜炼,赵明生,齐普衍,等,2020.爆破漏斗理论在边坡坡面成型控制中的应用[J].矿业研究与开发,40(9):18-22.
胡刚,国志雨,李庆文,2018.煤矸石混凝土可爆性影响因素的正交试验研究[J].非金属矿,41(5):31-33.
蒋复量,张帅,李向阳,等,2018.基于正交设计的类铀矿岩相似材料配合比试验研究[J].矿冶工程,38(2):20-24.
李恒,张智宇,李祥龙,等,2022.基于正交设计的露天含水炮孔冲孔效应敏感度分析[J].有色金属工程,12(4):91-99.
李祥龙,杨长辉,王建国,等,2022.基于模型试验的预裂孔爆破参数优选[J].高压物理学报,36(2):190-196.
刘志刚,曹安业,井广成,2018.煤体卸压爆破参数正交试验优化设计研究[J].采矿与安全工程学报,35(5):931-939.
单仁亮,黄宝龙,蔚振廷,等,2012.岩巷掘进准直眼掏槽爆破模型试验研究[J].岩石力学与工程学报,31(2):256-264.
孙飞,周向阳,蒋新忠,等,2016.线型聚能切割器爆破拆除钢结构烟囱的优化设计[J].工程爆破,22(6):48-54.
孙龙华,杨双锁,李达昌,等,2013.石灰岩平巷合理掏槽方法和爆破参数的研究[J].金属矿山,42(9):26-29.
文梼,谭海,2011.岩石爆破中的空孔效应数值计算分析[J].爆破,28(3):58-61.
吴钦正,李润然,李桂林,等,2021.基于JKSimBlast软件的露天矿爆破毫秒延期时间优化[J].黄金科学技术,29(6):854-862.
尹岳降,李瑞泽,陈明,等,2019.基于正交试验法的爆破块度分布影响因素敏感性分析[J].爆破,36(4):37-42.
于冰冰,王雁冰,王宝珠,2021.顾北煤矿岩巷掏槽超深爆破试验研究[J].煤炭工程,53(11):113-119.
袁文华,马芹永,黄伟,2012.楔形掏槽微差爆破模型试验与分析[J].岩石力学与工程学报,31(增1):3352-3356.
张宇菲,2018.高地应力岩巷掏槽爆破围压效应模型试验研究[D].北京:中国矿业大学.
[1] Yunmei XU, Liwei YUAN, Haonan LONG. Sensitivity Analysis of Stability Influencing Factors of Dry Heap Tailings Reservoir [J]. Gold Science and Technology, 2023, 31(6): 1014-1022.
[2] Guangxu RONG, Zongyang LI. Application of CNN-LSTM Model in Slope Reliability Analysis [J]. Gold Science and Technology, 2023, 31(4): 613-623.
[3] Feng GAO,Haoquan AI,Yaodong LIANG,Zengwu LUO,Xin XIONG,Keping ZHOU,Gen YANG. Optimization of Proportioning of Waste Rock and Tailings Mixed Filling Materials Based on NSGA-II Algorithm [J]. Gold Science and Technology, 2022, 30(1): 46-53.
[4] Meidao ZHANG,Yunzhang RAO,Wenfeng XU,Wentao WANG. Orthogonal Experiment on Optimization of Filling Ratio of Full Tailings Paste [J]. Gold Science and Technology, 2021, 29(5): 740-748.
[5] Xianglong LI,Qihu ZHANG,Jianguo WANG,Deyuan YANG,Bin LI,Xingbiao ZHU. Experimental Study on Precise Delay Hole-by-Hole Blasting Vibration Reduction of Underground Blasting [J]. Gold Science and Technology, 2021, 29(3): 401-410.
[6] Jianhua HU,Le PANG,Xueliang WANG,Minghua ZHENG. Optimization of Roadway Support Parameters in Soft Broken Sections Based on Orthogonal Test [J]. Gold Science and Technology, 2020, 28(6): 859-867.
[7] Lei ZHANG, Lijie GUO, Wenchen LI. Experimental Study on Preparation of Filling Cementitious Materials Based on Copper-Nickel Smelting Slag [J]. Gold Science and Technology, 2020, 28(5): 669-677.
[8] Zhipeng LAN,Xinmin WANG,Qinli ZHANG,Qiusong CHEN. Experiment Research on Magnetized Water’s Effect on Friction Loss of Paste Slurry in Pipeline Transport [J]. Gold Science and Technology, 2018, 26(6): 811-818.
[9] LONG Keming,WANG Liguan. Optimization of Stope Structural Parameters Based on ANSYS-R Method [J]. Gold Science and Technology, 2015, 23(6): 81-86.
[10] WANG Xinmin,HU Yibo,WANG Shi,LIU Jixiang,CHEN Yu,BIAN Jiwei. Orthogonal Test of Optimization of Ultrafine Whole-tailings Backfill Materials [J]. Gold Science and Technology, 2015, 23(3): 45-49.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!