img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Research on Prediction of Rock Mass Blastability Classification Based on PCA-SVM Model

  • Chaoqun HAN ,
  • Jianhong CHEN ,
  • Zhiyong ZHOU ,
  • Shan YANG
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2019-01-28

  Revised date: 2019-03-25

  Online published: 2019-12-24

Abstract

The accurate evaluation of the classification of rock mass blast ability is of great significance to the design of blasting excavation and the safety and stability of geotechnical engineering.At present,scholars at home and abroad in the field of blasting have not reached a consensus on the evaluation method of rock blast ability.The factors affecting rock blasting are very complex,and the research indicators adopted by different scholars are different.By comprehensively considering the influence of the inherent properties of the rock mass and the actual blasting effect on the rock mass blast ability,six kinds of attributes including acoustic wave and wave impedance of rock mass,volume of blasting funnel,percentage of large blocks,percentage of small blocks and average eligibility rate were selected to predict the classification of rock mass blast ability.Considering the complex and varied geological conditions of engineering rock masses,according to the actual situation of several mines,55 sample data were selected,which cover quartzite,magnetite,skarn,diorite, gneiss,the lithology of marble,granite,limestone,metamorphic schist,dolomite,sandstone,etc..The sample raw data are from many rock mass engineering with different geographical locations and different geological conditions,which are representative.The PCA-SVM model and the SVM model were used to compare and analyze the explosive rock prediction results.Firstly,the same random seeds were used to ensure that the number of ore samples of the two models is the same as that of the training set and forecast set.Then,according to the data extracted by the principal component analysis and the raw data that have not been processed,the SVM models were established respectively,and the 11 prediction results were compared and analyzed.In the 11 randomized trials,the accuracy of PCA-SVM model was 100% at one time,there were 8 cases where one sample was misjudged,and 2 cases where two samples were misjudged.The number of misjudgments in the PCA-SVM model in a single random experiment is less than or equal to the SVM model.The average prediction accuracy of the PCA-SVM model is 90.1%,which was significantly higher than the SVM model.The results show that:(1) The prediction model based on principal component analysis and support vector machine eliminates the information overlap between the impact indicators and extracts four principal components which contain 98.38% of the original information.Compared with the standard SVM model,the PCA-SVM model not only reduces the dimension of the data,but also improves the accuracy of the rock explode grade from 78.5% to 90.1%.(2) The prediction results of PCA-SVM model are in good agreement with the actual situation.A small number of misjudgments mainly occur between some rock samples with small differences in characteristics.(3)The PCA-SVM prediction model based on the stratified random sampling technique ensures the randomness and difference of the sample data between the training set and the test set.This method is more scientific and reasonable than the general research model,and has a certain reference significance for the research of similar engineering.

Cite this article

Chaoqun HAN , Jianhong CHEN , Zhiyong ZHOU , Shan YANG . Research on Prediction of Rock Mass Blastability Classification Based on PCA-SVM Model[J]. Gold Science and Technology, 2019 , 27(6) : 879 -887 . DOI: 10.11872/j.issn.1005-2518.2019.06.879

References

1 蒋复量.金属矿矿岩可爆性评价及井下采场深孔爆破参数优化的理论与试验研究[D].长沙:中南大学,2012.
1 Jiang Fuliang.The Evaluation of Ore-rock’s Blastability in Metal Mine and the Theoretical and Experimental Study of Deep-hole Blasting Parameters’ Optimization in Underground Stope[D].Changsha:Central South University,2012.
2 张钦礼,刘伟军,杨伟,等.基于PCA和改进BP组合预测模型的矿岩可爆性研究[J].爆破,2016,33(1):19-25,83.
2 Zhang Qinli,Liu Weijun,Yang Wei,et al.Study on rock mass blastability based on combined PCA and improved BP predicting model[J].Blasting,2016,33(1):19-25,83.
3 胡桂英,刘科伟,杜鑫,等.光面掏槽爆破技术的研究及其在巷道掘进中的应用[J].黄金科学技术,2018,26(3):349-356.
3 Hu Guiying,Liu Kewei,Du Xin,et al.Research on smooth-cutting method and its application in tunnel excavation[J].Gold Science and Technology,2018,26(3):349-356.
4 卢富然,陈建宏.基于AHP和熵权TOPSIS模型的岩爆预测方法[J].黄金科学技术,2018,26(3):365-371.
4 Lu Furan,Chen Jianhong.Rock burst prediction method based on AHP and entropy weight TOPSIS model[J].Gold Science and Technology,2018,26(3):365-371.
5 张德明,王新民,郑晶晶,等.基于模糊综合评判的矿岩体可爆性分级[J].爆破,2010,27(4):43-47.
5 Zhang Deming,Wang Xinmin,Zheng Jingjing,et al.Blastability classification of rock and mine based on fuzzy comprehensive evaluation[J].Blasting,2010,27(4):43-47.
6 赵国彦,余佩佩,周礼.基于未确知测度理论的岩体可爆性分级[J].爆破,2013,30(4):20-24,31.
6 Zhao Guoyan,Yu Peipei,Zhou Li.Classification of rock mass blastability based on unascertained measurement theory[J].Blasting,2013,30(4):20-24,31.
7 李金玲,王李管,陈鑫.露天矿山复杂爆破网路起爆模拟及效果预测[J].黄金科学技术,2017,25(4):87-92.
7 Li Jinling,Wang Liguan,Chen Xin.Complex blasting network detonation simulation and effect prediction for open pit mine[J].Gold Science and Technology,2017,25(4):87-92.
8 李启月,韦佳瑞,李易,等.施工方案技术改进在某金矿深孔爆破成井中的应用[J].黄金科学技术,2016,24(3):1-8.
8 Li Qiyue,Wei Jiarui,Li Yi ,et al.Application of technology improvement of construction scheme in deep hole blasting of a gold mine[J].Gold Science and Technology,2016,24(3):1-8.
9 彭亚雄,程瑶,吴立,等.基于AHP-TOPSIS法的矿岩可爆性评价[J].爆破,2017,34(4):80-84,105.
9 Peng Yaxiong,Cheng Yao,Wu Li,et al.Assessment for ore-bearing rock mass blastability based on AHP-TOPSIS [J].Balsting,2017,34(4):80-84,105.
10 马康,张群,盛建龙,等.基于GCRN的矿岩可爆性分级模型及其应用[J].武汉科技大学学报(自然科学版),2016,39(3):200-203.
10 Ma Kang,Zhang Qun,Sheng Jianlong,et al.GCRN-based model for classification of ore-bearing rock-mass blastability and its application[J].Journal of Wuhan University of Science and Technology(Natural Science Edition),2016,39 (3):200-203.
11 邵良杉,赵琳琳,温廷新,等.基于模糊多元线性回归模型的岩石可爆性评价[J].中国安全科学学报,2015,25(7):68-73.
11 Shao Liangshan,Zhao Linlin,Wen Tingxin,et al.Assessment of rock mass blastability based on fuzzy multiple linear regression model[J].China Safety Science Journal,2015,25(7):68-73.
12 王超,许红磊,李祥龙,等.矿岩可爆性分级的距离判别方法及应用[J].昆明理工大学学报(自然科学版),2017,42(2):34-37,62.
12 Wang Chao,Xu Honglei,Li Xianglong,et al.A distance discriminant analysis method for orebody blastability classification and its application[J].Journal of Kunming University of Science and Technology (Natural Science Edition),2017,42(2):34-37,62.
13 邓红卫,陈超群,张亚南.岩体可爆性等级判别的随机森林模型及R实现[J].世界科技研究与发展,2016,38(5):946-949.
13 Deng Hongwei,Chen Chaoqun,Zhang Yanan.Random forest model of rock mass blastability grading and R language implementation[J].World Sci-Tech R&D,2016,38(5):946-949.
14 辛明印,璩世杰,陈煊年,等.南芬露天铁矿的岩体可爆性分级方法及其应用[J].工程爆破,2006,12(1):7-10.
14 Xin Mingyin,Qu Shijie,Chen Xuannian,et al.A new method of rock-mass blastability classification and its application in Nan-fen open pit iron mine engineering balsting[J].Engineering Blasting,2006,12(1):7-10.
15 刘志祥,郭虎强,兰明.金属矿采空区危险性判别的PCA-SVM模型研究[J].矿冶工程,2014,34(4):16-19.
15 Liu Zhixiang,Guo Huqiang,Lan Ming.Study on PCA-SVM model for evaluation of gob hazards in metal mine[J].Mining and Metallurgical Engineering,2014,34(4):16-19.
16 詹长杰,周步祥.基于PCA-SVM模型的中长期电力负荷预测[J].电测与仪表,2015,52(9):6-10,40.
16 Zhan Changjie,Zhou Buxiang.The medium and long term power load forecasting model based on PCA-SVM[J].Electrical Measurement and Instrumentation,2015,52(9):6-10,40.
17 罗战友,杨晓军,龚晓南.基于支持向量机的边坡稳定性预测模型[J].岩石力学与工程学报,2005,24(1):144-148.
17 Luo Zhanyou,Yang Xiaojun,Gong Xiaonan.Support vector machine model in slope stability evaluation[J].Chinese Journal of Rock Mechanics and Engineering,2005,24(1):144-148.
18 张曼,陈建宏,周智勇.基于SVM的冲击地压分级预测模型及R语言实现[J].中国地质灾害与防治学报,2018,29(4):64-69.
18 Zhang Man,Chen Jianhong,Zhou Zhiyong.Grading prediction model of rock burst based on SVM and its R language description[J].The Chinese Journal of Geological Hazard and Control,2018,29(4):64-69.
19 钮强,龙凌霄,王明林.我国岩石爆破性分级的试验研究[J].金属矿山,1984(12):2-8.
19 Niu Qiang,Long Lingxiao,Wang Minglin.Experimental study on rock blasting classification in China[J].Metal Mine,1984(12):2-8.
20 韩路朋,肖敏,刘杰.基于Fisher判别分析和R语言的矿岩可爆性等级预测研究[J].现代矿业,2017,33(12):59-63.
20 Han Lupeng,Xiao Min,Liu Jie.Study on prediction of rock mass blastability classification based on fisher discriminant analysis method and R language[J].Modern Mining,2017,33(12):59-63.
Outlines

/