img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture

  • Guicheng HE ,
  • Kexu CHEN ,
  • Bing DAI ,
  • Chengcheng WANG
Expand
  • 1.School of Resource Environment and Safety Engineering,University of South China,Hengyang 421000,Hunan,China
    2.Deep Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Yantai 261442,Shandong,China

Received date: 2020-01-02

  Revised date: 2020-05-21

  Online published: 2020-08-27

Abstract

Defects in rocks make their physical properties anisotropic.When subjected to external force,the defect will crack,expand and even destroy.Therefore,it is very important to study its failure behavior to predict the instability of engineering structure.Previous studies are more concentrated on the evolution process of single fracture or non intersecting multi fracture,however,rock fracture often exists in the form of intersecting multi fracture in practical engineering.Based on RMT-150B,the cross fracture rock samples (150 mm×200 mm×45 mm) with different fracture inclination were prepared in the laboratory,and the uniaxial compression test was carried out with the displacement controlled loading mode of 0.01 mm/s.The results show that the peak strength and modulus of elasticity of the cross fracture specimen are lower than that of the intact specimen.The peak strength,modulus of elasticity and crack initiation stress increase first and then decrease with the increase of fracture inclination.In order to make up for the shortcomings of laboratory test technology in reflecting the macro and micro morphology of cross cracks,PFC2D numerical simulation technology was used to calibrate the micro parameters of the numerical model by comparing the deformation and failure characteristics of the complete specimen.The results of numerical simulation show that the relationship between peak strength,modulus of elasticity,initial crack stress and crack inclination is basically consistent with the results of laboratory tests.From the process of crack evolution,it is observed that the inclination angle of 0° is the simultaneous cracking from the tip of the primary and secondary cracks,the inclination angle of 30° is the crack initiation from the tip of the primary crack,and the inclination angle of 45° and 60° are the cracks from the tip of the secondary crack.The number curves of microcracks are divided into four stages,namely quiescent period, slow increase period, mid-term increase period, and most active period,and the growth rate of the latter stage is always higher than that of the former stage,the change characteristics of cracks are different in different stages.It can be clearly seen from the displacement field that when the inclination angles are 0°,30° and 45°respectively,the specimen is the diagonal shear failure controlled by the secondary fracture.When the inclination angle is 60°,the specimen is mainly the shear failure controlled by the main fracture.

Cite this article

Guicheng HE , Kexu CHEN , Bing DAI , Chengcheng WANG . Experimental Study and Numerical Simulation Analysis of Crack Propagation Characteristics of Crisscross Fracture[J]. Gold Science and Technology, 2020 , 28(4) : 509 -520 . DOI: 10.11872/j.issn.1005-2518.2020.04.029

References

1 钱七虎.地下工程建设安全面临的挑战与对策[J].岩石力学与工程报,2012,31(10):1945-1956.
1 Qian Qihu.Challenges faced by underground projects construction safety and countermeasures[J].Chinese Journal of Rock Mechanics and Engineering,2012,31(10):1945-1956.
2 Brace W F,Byerlee J D.Recent experimental studies of brittle fracture rocks[C]//Proeeedings of the Eighth U. S. Symposium on Rock Mechanics.Minnesota:American Rock Mechanics Assonciation,1967:57-81.
3 Wong L N Y,Einstein H H.Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression[J].International Journal of Rock Mechanics and Mining Sciences,2009,46(2):239-249.
4 蒲成志,曹平,陈瑜,等.不同裂隙相对张开度下类岩石材料断裂试验与破坏机理[J].中南大学学报(自然科学版),2011,42(8):2394-2399.
4 Pu Chengzhi,Cao Ping,Chen Yu,et al.Fracture test and failure mechanism of rock-like material of relatively different fracture apertures[J].Journal of Central South University(Science and Technology),2011,42(8):2394-2399.
5 张国凯,李海波,王明洋,等.基于声学测试和摄像技术的单裂隙岩石裂纹扩展特征研究[J].岩土力学,2019,40(增1):63-72,81.
5 Zhang Guokai,Li Haibo,Wang Mingyang,et al.Crack propagation characteristics in rocks containing single fissure based on acoustic testing and camera technique[J].Rock and Soil Mechanics,2019,40(Supp.1):63-72,81.
6 Haeri H,Shahriar K,Marji M F,et al.Experimental and numerical study of crack propagation and coalescence in pre-cracked rock-like disks[J].International Journal of Rock Mechanics and Mining Sciences,2014,67(4):20-28.
7 黄彦华,杨圣奇.断续三裂隙砂岩单轴压缩裂纹扩展特征颗粒流分析[J].应用基础与工程科学学报,2016,24(6):1232-1246.
7 Huang Yanhua,Yang Shengqi.Particle flow analysis on crack coalescence behavior of sandstone specimen containing three pre-existing fissures under uniaxial compression[J].Journal of Basic Science and Engineering,2016,24(6):1232-1247.
8 Lee J,Hong J W,Jung J W.The mechanism of fracture coalescence in pre-cracked rock-type material with three flaws[J].Engineering Geology,2017,223:31-47.
9 Yang S Q.Crack coalescence behavior of brittle sandstone samples containing two coplanar fissures in the process of deformation failure[J].Engineering Fracture Mechanics,2011,78(17):3059-3081.
10 Zhou X P,Cheng H,Feng Y F.An experimental study of crack coalescence behaviour in rock-like materials containing multiple flaws under uniaxial compression[J].Rock Mechanics and Rock Engineering,2014,47:1961-1986.
11 黄彦华,杨圣奇,鞠杨,等.断续裂隙类岩石材料三轴压缩力学特性试验研究[J].岩土工程学报,2016,38(7):1212-1220.
11 Huang Yanhua,Yang Shengqi,Ju Yang,et al.Experimental study on mechanical behavior of rock-like materials containing pre-existing intermittent fissures under triaxial compression[J].Chinese Journal of Geotechnical Mecha-nics and Engineering,2016,38(7):1212-1220.
12 杨圣奇,黄彦华,温森.高温后非共面双裂隙红砂岩力学特性试验研究[J].岩石力学与工程学报,2015,34(3):440-451.
12 Yang Shengqi,Huang Yanhua,Wen Sen.Experimental study of mechanical behavior of red sandstone with two non-coplanar fissures after high temperature heating[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(3):440-451.
13 范祥,谢永利,来弘鹏,等.含两条节理岩样压缩破坏行为的颗粒流模拟[J].地下空间与工程学报,2018,14(2):461-469.
13 Fan Xiang,Xie Yongli,Lai Hongpeng,et al.Numerical simulation of failure behavior of specimens with two flaws under compressive loading using PFC[J].Chinese Journal of Underground Space and Engineering,2018,14(2):461-469.
14 Huang Y H,Yang S Q,Ranjith P G,et al.Strength failure behavior and crack evolution mechanism of granite containing pre-existing non-coplanar holes:Experimental stu-dy and particle flow modeling[J].Computers and Geotechnics,2017,88:182-198.
15 Sun W B,Du H Q,Shao J L,et al.Numerical Analysis of Crack Propagation Evolution of Specimens with Different Dip Angles of Cross Fractures[J].Geotechnical and Geological Engineering,2019,37:3379-3386.
16 田文岭,杨圣奇,黄彦华.不同围压下共面双裂隙脆性砂岩裂纹演化特性颗粒流模拟研究[J].采矿与安全工程学报,2017,34(6):1207-1215.
16 Tian Wenling,Yang Shengqi,Huang Yanhua.PFC2D simulation on crack evolution behavior of brittle sandstone containing two coplanar fissures under different confining pressures[J].Journal of Mining and Safety Engineering,2017,34(6):1207-1215.
17 李勇,蔡卫兵,朱维申,等.单轴压缩条件下平行双裂隙演化机理的颗粒流分析[J].中南大学学报(自然科学版),2019,50(12):3035-3045.
17 Li Yong,Cai Weibing,Zhu Weishen,et al.Particle flow analysis of parallel double crack evolution under uniaxial compression[J].Journal of Central South University(Sc-ience and Technology),2019,50(12):3035-3045.
18 Cao Ping,Liu Taoying,Pu Chengzhi,et al.Crack propagation and coalescence of brittle rock-like specimens with pre-existing cracks in compression[J].Engineering Geology,2015,187:113-121.
19 张波,李术才,杨学英,等.含交叉多裂隙类岩石材料单轴压缩力学性能研究[J].岩石力学与工程学报,2015,34(9):1777-1785.
19 Zhang Bo,Li Shucai,Yang Xueying,et al.Mechanical property of rock-like material with intersecting multi-flaws under uniaxial compression[J].Chinese Journal of Rock Mechanics and Engineering,2015,34(9):1777-1785.
20 张波,李术才,杨学英,等.含交叉裂隙节理岩体单轴压缩破坏机制研究[J].岩土力学,2014,35(7):1863-1870.
20 Zhang Bo,Li Shucai,Yang Xueying,et al.Uniaxial compression failure mechanism of jointed rock mass with cross-cracks[J].Rock and Soil Mechanics,2014,35(7):1863-1870.
21 张波,杨学英,李术才,等.含两组叠置X型裂隙类岩石材料单轴拉伸破坏特征[J].煤炭学报,2017,42(8):1987-1993.
21 Zhang Bo,Yang Xueying,Li Shucai,et al.Uniaxial tensile failure properties of rock-like specimens with two overlapped X-type flaws[J].Journal of China Coal Society,2017,42(8):1987-1993.
22 罗可,招国栋,曾佳君,等.加载速率影响的含裂隙类岩石材料破断试验与数值模拟[J].岩石力学与工程学报,2018,37(8):1833-1842.
22 Luo Ke,Zhao Guodong,Zeng Jiajun,et al.Fracture experiments and numerical simulation of cracked body in rock-like materials affected by loading rate[J].Chinese Journal of Rock Mechanics and Engineering,2018,37(8):1833-1842.
23 蒲成志,曹平,衣永亮.单轴压缩下预制2条贯通裂隙类岩材料断裂行为[J].中南大学学报(自然科学版),2012,43(7):2708-2715.
23 Pu Chengzhi,Cao Ping,Yi Yongliang.Fracture for rock-like materials with two transfixion fissures under uniaxial compression[J].Journal of Central South University(Science and Technology),2012,43(7):2708 -2715.
24 王宇,李晓,武艳芳,等.脆性岩石起裂应力水平与脆性指标关系探讨[J].岩石力学与工程学报,2014,33 (2):264-275.
24 Wang Yu,Li Xiao,Wu Yanfang,et al.Research on relationship between crack initiation stress level and brittleness indices for brittle rocks[J].Chinese Journal of Rock Mechanics and Engineering,2014,33(2):264-275.
25 Zhang X P,Wong L N Y.Displacement field analysis for cracking processes in bonded-particle model[J].Bulletin of Engineering Geology and the Environment,2014,73(1):13-21.
Outlines

/