img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Obstacle Detection Technology of Mine Electric Locomotive Driverless Based on Computer Vision Technology

  • Jinghua WANG ,
  • Liguan WANG ,
  • Lin Bi
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2020-05-18

  Revised date: 2020-08-03

  Online published: 2021-03-22

Abstract

The mining of mineral resources is getting deeper and deeper,the working environment is bad,the employees are aging seriously,and the human cost is rising,which brings great challenges to the development of mining industry.Intelligent mine operation has become an inevitable trend.As a part of mine intellec-tualization,unmanned transportation system is very important for mine,which means the improvement of safety production efficiency can achieve zero injury and zero time loss.Considering the development demand of driverless electric vehicle and the traditional computer vision method,it is difficult to realize the real-time detection and location of obstacles.An intelligent obstacle detection method based on the combination of traditional computer vision technology and deep learning target detection algorithm YOLOv3 was proposed.First of all,the video data of obstacles in the driving area of electric locomotive(this paper calls it effective detection area) were collected,using an image annotation tool namely labelimg to make VOC data set,using YOLOv3 to train data set,according to the feedback results,adjust the parameters continuously to obtain the relative optimal parameters,and finally get the obstacle detection model.Then use the traditional computer vision technology to locate the track by edge,texture and other information,using the “3 neighborhood” search method to get the track line coordinate value of left and right track lines,and expand a certain distance to the outside of the track according to the distance information,extracting the effective detection area,thus reducing the computational complexity of the later obstacle detection,at the same time,gridding images,converting the coordinates of obstacles to the actual distance.Finally,using the obstacle detection model to detect the effective detection area and respond to the detection results.Experimental results show that the method can identify many objects with different characteristics in the driving area,such as electric locomotive,people,large falling rocks,etc.It can process 6 pictures per second,and the average accuracy of the actual data collected in the field reaches 93.2%,it has good performance in real-time and accuracy,and has a good effect in the underground mine scene.

Cite this article

Jinghua WANG , Liguan WANG , Lin Bi . Obstacle Detection Technology of Mine Electric Locomotive Driverless Based on Computer Vision Technology[J]. Gold Science and Technology, 2021 , 29(1) : 136 -146 . DOI: 10.11872/j.issn.1005-2518.2021.01.089

References

null Deng J,Dong W,Socher R,al et,2009.ImageNet:A large-scale hierarchical image database[C]//2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2009).Miami:IEEE:248-255.
null Dewan A,Caselitz T,Tipaldi G D,al et,2016. Motion-based detection and tracking in 3D LiDAR scans[C]// 2016 IEEE International Conference on Robotics and Automation (ICRA). Washington DC:IEEE:4508-4513.
null Guo Chunming,2019.Obstacle detection method in front of track based on video image[J].Electronic Measurement Technology,42(12):55-59.
null Güzel M S,Zakaria W,2013.A hybrid architecture for vision-based obstacle avoidance[J].Advances in Mechanical Engineering,5:545-550.
null He K M,Zhang X Y,Ren S Q,al et,2016.Deep residual learning for image recognition[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Las Vegas:IEEE:770-778.
null He K,Gkioxari G,Dollár P,al et,2020.Mask R-CNN[J].IEEE Transactions on Pattern Analysis & Machine Intelligence,42(2):386-397.
null Lin T Y,Dollár P,Girshick R,al et,2017.Feature pyramid networks for object detection[C]//2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Honolulu:IEEE:936-944.
null Lin T,Maire M,Belongie S,al et,2014.Microsoft COCO:Common objects in context[C]//Computer Vision-ECCV 2014.Cham:Springer:740-755.
null Liu L,Ouyang W,Wang X,al et,2018.Deep learning for generic object detection:A survey[J].International Journal of Computer Vision,128(2):261-318.
null Liu Wenqi,2016.Detection Algorithm of Railway Foreign Body Based on Depth Neural Network [D].Beijing:Beijing Jiaotong University.
null Lou Xinyu,Wang Hai,Cai Yingfeng,al et,2019. Research on real-time road obstacle detection and classification algorithm using 64 line lidar [J]. Automotive Engineering,41(7):779-784.
null Redmon J,Divvala S,Girshick R,al et,2016.You only look once:Unified,real-time object detection[C]// 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas:IEEE:779-788.
null Redmon J,Farhadi A,2017. YOLOv3:An incremental improvement[C]// IEEE Conference on Computer Vision and Pattern Recognition(CVPR).Honolulu:IEEE:779-788.
null Ruder M,Mohler N,Ahmed F,2003.An obstacle detection system for automated trains[C]//Intelligent Vehicles Symposium. Washington DC:IEEE:180-185.
null Song Huaibo,He Dongjian,Xin Xiangjun,2011.Unstructured road detection and obstacle recognition based on machine vision [J].Journal of Agricultural Engineering,27(6):225-230.
null Tong Lei,Zhu Liqiang,Yu Zujun,al et,2012.Detection of track foreign matters based on vehicle mounted forward-looking camera[J].Transportation System Engineering and Information,12 (4):79-83.
null Wang Xinzhu,Li Jun,Li Hongjian,al et,2016.Automatic obstacle detection method based on 3D lidar and depth image [J]. Journal of Jilin University(Engineering Edition),46(2):360-365.
null Xie Desheng,Xu Youchun,Wang Rendong,al et,2018.Obstacle detection and tracking of unmanned vehicle based on 3D lidar[J]. Automotive Engineering,(8):952-959.
null Zhuang Fuzhen,Luo Ping,He Qing,al et,2015.Research progress of transfer learning[J].Journal of Software,26(1):26-39.
null 郭春明,2019.基于视频图像的轨道前方障碍物检测方法[J].电子测量技术,42(12):55-59.
null 刘文祺,2016.基于深度神经网络的铁路异物检测算法[D].北京:北京交通大学.
null 娄新雨,王海,蔡英凤,等,2019.采用64线激光雷达的实时道路障碍物检测与分类算法的研究[J].汽车工程,41(7):779-784.
null 宋怀波,何东健,辛湘俊,2011.基于机器视觉的非结构化道路检测与障碍物识别方法[J].农业工程学报,27(6):225-230.
null 同磊,朱力强,余祖俊,等,2012.基于车载前视摄像机的轨道异物检测[J].交通运输系统工程与信息,12(4):79-83.
null 王新竹,李骏,李红建,等,2016.基于三维激光雷达和深度图像的自动驾驶汽车障碍物检测方法[J].吉林大学学报(工学版),46(2):360-365.
null 谢德胜,徐友春,王任栋,等,2018.基于三维激光雷达的无人车障碍物检测与跟踪[J].汽车工程,(8):952-959.
null 庄福振,罗平,何清,等,2015.迁移学习研究进展[J].软件学报,26(1):26-39.
Outlines

/