[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Analysis of Acoustic Emission Index Characteristics for Indoor Uniaxial Com-pression Test of Backfill

  • Rong LU , 1, 2, 3 ,
  • Fengshan MA , 1, 2 ,
  • Jie ZHAO 3 ,
  • Jie GUO 1, 2 ,
  • Jinzhong GU 4 ,
  • Yeqiang HUANG 4
Expand
  • 1. Key Laboratory of Shale Gas and Geoengineering,Institute of Geology and Geophysics,Chinese Academy of Sciences,Beijing 100029,China
  • 2. Innovation Academy for Earth Science,Chinese Academy of Sciences,Beijing 100029,China
  • 3. Deep Mining Laboratory of Shandong Gold Group Co. ,Ltd. ,Laizhou 261400,Shandong,China
  • 4. Jinchuan Group Co. ,Ltd. ,Jinchang 737100,Gansu,China

Received date: 2020-07-06

  Revised date: 2020-11-18

  Online published: 2021-05-28

Highlights

As the shallow mineral resources exhausted,deep mining is the general trend for global mining engineering. Backfill method is widely used in metal mining engineering which control the mine stability. With the improvement of the method,the mechanical behavior of backfill is attracted extensive attention. This article analyzed backfill mechanical behavior based on the experimental test.Combined uniaxial compression tests with acoustic emission monitoring,backfill samples with pre-existing crack were tested.Five groups backfill samples were tested and all samples with strength within 35 MPa. Five groups sample with dips of 0°,30°,45°,60°,and 90°,represented five fractures distribution.The results show that backfill sample with 90°-dip fracture demonstrated more obvious brittleness and less plasticity than other samples.Acoustic emission signals could represent fractures initiation and development of backfill samples.Acoustic emission locations have their characteristics in five groups backfill samples. Initially,acoustic emission of backfill sample with 0°-dip fracture located near the pre-existing fracture,and then develop to the other parts of sample.While for backfill samples with other four dips fractures,acoustic emission mainly concentrated near the pre-existing fractures from initial stage to failure.For acoustic emission monitoring,some parameters could demonstrate the me-chanism of fractures propagation.In this article,three parameters were analyzed,they are AF,RA,and lg(AF/RA),respectively. AF represented the tensile fracture propagation,RA represented the shear fracture propagation,and lg(AF/RA) could reveal the overall fracture development.The process of backfill compression is divided into eight stages,namely crack closure,line elastic deformation,micro-crack initiation,stable micro-crack growth,micro-crack coalescence,unstable micro-crack growth,macro-crack coalescence,and failure. Finally,the results show that the dip of pre-existing crack has large influence to backfill deformation and failure according to these three parameter analysis. AE value of the backfill sample with 0°-dip fracture is high in whole deformation process,and RA value remains low and waves in small range. The change of AE and RA value showes shear and rupture in particles is not obvious,and initialed and developed fractures are major tensile.Based on this parameters changed,other four samples parameters values were analyzed,and backfill samples with 30°-dip and 45°-dip fracture are similar to backfill sample with 0°-dip fracture,and backfill samples with 60°-dip and 90°-dip fracture are different.Finally the research come to a conclusion that samples with small dips of pre-existing crack failed by tensile cracks,and samples with large dips of pre-existing crack failed by tensile-shear cracks.

Cite this article

Rong LU , Fengshan MA , Jie ZHAO , Jie GUO , Jinzhong GU , Yeqiang HUANG . Analysis of Acoustic Emission Index Characteristics for Indoor Uniaxial Com-pression Test of Backfill[J]. Gold Science and Technology, 2021 , 29(2) : 218 -225 . DOI: 10.11872/j.issn.1005-2518.2021.02.119

[an error occurred while processing this directive]

加拿大矿业协会敦促政府切实重视关键矿产

据Mining Weekly报道,加拿大矿业协会(MCA,Mining Association of Canada)对政府2021年联邦预算中提出的巩固和发展国内电池供应链的几项补充和细化措施表示欢迎,不过会长皮埃尔·格拉顿(Pierre Gratton)认为针对稀土的特殊支持措施力度不大。

4月19日,加拿大财政部长克里斯蒂亚·弗里兰(Chrystia Freeland)在预算报告中提出,为巩固国内电池电动车(BEV)供应链,将战略创新基金(SIF,Strategic Innovation Fund)—净零加速器(Net Zero Accelerator)规模扩大到80亿加元,另外还辅助一些税收激励政策。

“我们需要电池级镍、钴、锂和石墨,能够有这些弥补和扩大国内材料生产的计划和税收措施,令人欣慰。”格拉顿表示。成立关键矿产创新中心(CMCE,Critical Minerals Centre of Excellence)来协调联邦政策和计划,联邦政府3年内投入3 680万加元用于研发,推进关键电池矿产加工和精炼,这些针对稀土的特殊支持措施是正面的,但力度不够。

被列入关键矿产目录的稀土广泛应用于医疗、国防、清洁能源和通信行业。为提高系统供应链韧性,加拿大与美国签署合作行动协议,目的是构建稀土和永磁所需原材料的开采、加工和生产供应链,提升大北美区在这方面的韧性和独立性。

“加拿大具备成为全球领先者的潜力,能够以全面环境友好的方式实现关键矿产自给,并满足伙伴国对关键矿产不断增长的需求”。“尽管2021年预算中包括的支持措施表明支撑构建电池供应链,包括支撑电池生产的矿物和金属,但是如果我们要与美国建立同等和可信赖的伙伴关系来构建北美地区国内供应链,仍然需要采取特殊措施来推动加拿大稀土开发”,格拉顿表示。

2020年,MCA宣布了珠算数据(Abacus Data)完成的一项全国民意调查结果,公众热切希望加拿大发挥资源丰富和环境标准领先的优势扩大在全球关键矿产供应国中的地位。90%的被调查者认为加拿大将成为关键矿产来源的优先选择,政府将采取一系列步骤来支持这项措施。

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-2-218.shtml

Cao Shuai Song Weidong Xue Gaili al et2015.Tests of strength reduction of cemented tailings filling considering layering character[J].Rock and Soil Mechanics36(10):2869-2876.

Chen Bingrui Wei Fanbo Wang Rui al et2020.Failure mechanisms and precursory characteristics of deep buried granite in a tunnel in Southwest China[J].Chinese Journal of Rock Mechanics and Engineering39(3):469-479.

Chen Shengping Jiang Junling Li Sinian2003. Micro mechanical analysis of damage evolution of concrete under tension[J].Engineering Mechanics20(5):190-193.

Cui L Mamadou F2015.A coupled thermos-hydro-mechanical-chemical model for underground cemented tailings backfill[J].Tunnelling and Underground Space Technology,50:396-414.

Deng Daiqiang Yang Yaoliang Yao Zhongliang2007a.Rese-arch on constitutive equation of damage evolution of backfill based on the full tensile and compressive process[J].Chinese Journal of Underground Space and Engineering23(4):485-488.

Deng Daiqiang Yao Zhongliang Tang Shaohui2007b.Study on the mechanical property of backfill under split tension[J].Chinese Journal of Underground Space and Engineering3(1):32-34.

Ercikdi B Cihangir F Kesimal A al et2009.Utilization of industrial waste products as pozzolanic material in cemented paste backfill of high sulphide mill tailings[J].Journal of Hazardous Materials,168:848-856.

Fall M Belem T Samb S al et2007.Experimental characterization of the stress-strain behavior of cemented paste backfill in compression[J].Journal of Materials Sciences42(11):3914-3992.

Li Qiang Mao Xianbiao Bu Wankui al et2008.Mechanism of using waste-filling in roadway to control the deformation of covered rock strata[J].Journal of China University of Mining and Technology37(6):745-750.

Li Shulin Sang Yufa1997.The damage mechanism and damage constitutive equation of tailings-cemented filling body[J].Gold18(1):24-29.

Liu Zhixiang Li Xibing Dai Tagen al et2006.On damage model of cemented tailings backfill and its match with rock mass[J].Rock and Soil Mechanics27(9):1442-1446.

Nicksiar M Martin C D2012.Evaluation of methods for determining crack initiation in compression tests on low-porosity rocks[J]. Rock Mechanics Rock Engineering,45:607-617.

Peng Xianghe Yang Chunhe2000.The damage and its description of concrete under complex loading history[J].Chinese Journal of Rock Mechanics and Engineering19(2):157-164.

Sheng Q Y Yan H H Wen L T,et al.2017.An experimental investigation on strength, deformation and crack evolution behavior of sandstone containing two oval flaws under uniaxial compression [J] .Engineering Geology217:35-48.

Shi Xiaopeng2015.Analysis of the impact of large-diameter longhole mine blasting on filling body to backfilling[J].Nonferrous Metals Engineering5(Supp.1):113-115.

Song Weidong Ren Haifeng Cao Shuai2016.Interaction mechanism between backfill and rock pillar under confined compression condition[J].Journal of China University of Mining and Technology45(1):49-55.

Song Yupu2002.Constitutive Relation and Failure Criteria of Multiple Concrete Materials[M].Beijing:China Water Po-wer Press.

Wang C Bao T Lu H al et2015.Variation regulation of the acoustic emission energy parameter during the failure process of granite under unixial compression[J].Materials Te-sting57(9):755-760.

Wu D Cai S J Huang G2014.Coupled effect of cement hydration and temperature on rheological properties of fresh cemented tailings backfill slurry[J].Transactions of Nonferrous Metals Society of China24(9):2954-2963.

Wu Zheng1995.Investigation of concrete tensive & compressive constitution model based on damage mechanics[J].Te-chnology of Water Resources and Hydroelectric,11:58-63.

Xie Wenbing Shi Zhenfan Chen Xiaoxiang al et2004.Analysis of surrounding rock activities in partial backfill mining[J].Journal of China University of Mining and Technology33(2):162-165.

Xu Wenbin Song Weidong Wang Dongxu al et2014.Energy dissipation properties of cement backfill body under triaxial compression conditions[J].Journal of China University of Mining and Technology43(5):808-814.

Zhang Bo Li Shucai Yang Xueying al et2012.Uniaxial compression tests on mechanical properties of rock mass similar material with cross-cracks [J].Rock and Soil Mechanics33(12):3674-3679.

曹帅,宋卫东,薛改利,等,2015.考虑分层特性的尾砂胶结充填体强度折减试验研究[J].岩石力学36(10):2869-2876.

陈炳瑞,魏凡博,王睿,等,2020.西南地区某深埋隧道花岗岩破坏机制与前兆特征研究[J].岩石力学与工程学报39(3):469-479.

陈升平,蒋俊玲,李四年,2003.混凝土拉伸损伤演变的细观力学研究[J].工程力学20(5):190-193.

邓代强,杨耀亮,姚中亮,2007a.拉压全过程充填体损伤演化本构方程研究[J].地下空间与工程学报23(4):485-488.

邓代强,姚中亮,唐绍辉,2007b.单轴拉伸条件下充填体的力学性能研究[J].地下空间与工程学报3(1):32-34.

李强,茅献彪,卜万奎,等,2008.巷道矸石充填控制覆岩变形的力学机理研究[J].中国矿业大学学报37(6):745-750.

李庶林,桑玉发,1997.尾砂胶结充填体的破坏机理及其损伤本构方程[J].黄金18(1):24-29.

刘志祥,李夕兵,戴塔根,等,2006.尾砂胶结充填体损失模型及与岩体的匹配分析[J].岩土力学27(9):1442-1446.

彭向和,杨春和,2000.复杂加载史下混凝土的损伤及其描述[J].岩石力学与工程学报19(2):157-164.

史晓鹏,2015.大直径深孔采矿爆破对充填体的影响分析[J].有色金属工程5(增1):113-115.

宋卫东,任海锋,曹帅,2016.侧限压缩条件下充填体与岩柱相互作用机理[J].中国矿业大学学报45(1):49-55.

宋玉普,2002.多种混凝土材料的本构关系和破坏准则[M].北京:中国水利水电出版社.

吴政,1995.基于损伤的混凝土拉压全过程本构模型研究[J].水利水电技术,11:58-63.

谢文兵,史振凡,陈晓祥,等,2004.部分充填开采围岩活动规律分析[J].中国矿业大学学报33(2):162-165.

徐文彬,宋卫东,王东旭,等,2014.三轴压缩条件下胶结充填体能量耗散特征分析[J].中国矿业大学学报43(5):808-814.

张波,李术才,杨学英,等,2012.含交叉裂隙岩体相似材料试件力学性能单轴压缩试验[J].岩土力学33(12):3674-3679.

Outlines

/

[an error occurred while processing this directive]