[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Automatic Generation Method of Complex Orebody Projection Contour Based on Adaptive Mesh Generation

  • Guangbin LI , 1 ,
  • Anping LI 1 ,
  • Gangqiang XU 2
Expand
  • 1. Wulatehouqi Zijin Mining Co. ,Ltd. ,Wulatehouqi 015500,Inner Mongolia,China
  • 2. Changsha Digital Mine Co. ,Ltd. ,Changsha 410083,Hunan,China

Received date: 2020-09-07

  Revised date: 2020-11-10

  Online published: 2021-05-28

Highlights

The projection contour line of orebody is the basis of mine engineering layout and mining design. It is often used in business scenarios such as orebody structure analysis,model reconstruction,mine development design,mining plan formulation,etc.. Especially for model reconstruction,the accuracy of orebody contour directly affects the accuracy of reconstructed orebody model,and then affects the refined management of ore reserves and mining design. Therefore,it is of great significance to study the projection contour of orebody for the management of mine resources and reserves and production design.In order to solve the problems of complex orebody projection contour line generation,such as large amount of calculation and slow speed,an automatic generation method of complex orebody projection contours based on grid partition was proposed. The triangle mesh that constitutes the orebody model is projected to the designated plane by reducing the dimension to generate two-dimensional triangular patch set.Using self-adaptive rules to divide the grid into projection region,the triangular patches are stored in the corresponding grid cells,and the quad-tree method is used to establish the index relationship between triangular patches and the grid,and establish a two-dimensional index to the grid cells’ rows and columns. The grid unit is divided by using the method of adjacent element search,and the boundary rectangle of the element is used instead of the triangular surface of the internal element to participate in the operation. For triangular sheets spanning multiple grid elements in boundary elements,it is divided into boundary elements where triangular facets intersect with each other to reduce redundancy calculation. Finally,the projection contours is obtained by merging the set of recursive Boolean operations in the form of grid elements.In the research process,the CGAL:join algorithm was selected to conduct comparative experiments with this algorithm,and the number of triangles removed and the speed of solution were analyzed. CGAL:join algorithm does not screen the number of internal triangular patches,but this algorithm deals with the internal triangular patches,and the larger the search factor M,the less triangles are removed. Because CGAL:join algorithm does not filter out the internal triangular patches,the time consumption of CGAL:join algorithm is generally longer than that of this algorithm.With the increase of the number of patches,the time difference is more obvious.In this algorithm,the larger the search factor M,the more time-consuming,but the difference is small.The results show that the method improves the screening efficiency and solving speed,its convergence is stable,the speed is fast,and the projection contour line precision is high,which can meet the actual engineering requirements and application of mine,and has been applied in DIMINE digital mining software.

Cite this article

Guangbin LI , Anping LI , Gangqiang XU . Automatic Generation Method of Complex Orebody Projection Contour Based on Adaptive Mesh Generation[J]. Gold Science and Technology, 2021 , 29(2) : 296 -305 . DOI: 10.11872/j.issn.1005-2518.2021.02.153

[an error occurred while processing this directive]

智能矿山协同创新联合体揭牌成立

2021年4月,“智能矿山协同创新联合体”在郑州揭牌成立。该联合体由中国林业与环境促进会绿色矿山推进委员会联合矿山企业、研究机构、智能技术与装备服务商等近百家发起单位成立。中国科学院院士宋振骐担任高级顾问并出席揭牌仪式。

中国林业与环境促进会绿色矿山推进会会长史京玺表示,随着新时代新要求和科学技术的不断进步,矿业智能化已成为大势所趋。成立“智能矿山协同创新联合体”就是整合信息、整合技术、整合力量,为矿山企业提供“一体化、全流程服务方案”的一种工作机制。“智能矿山协同创新联合体”的主要任务就是推进人工智能、物联网、云计算、大数据、机器人、智能技术装备与矿产资源开发深度融合,打造清洁低碳、安全高效的矿山智能化体系,推动我国矿业高质量发展。

据了解,“智能矿山协同创新联合体”成员由从事智能矿山建设的产、学、研、企、金等相关机构和企业组成,各成员单位主营业务不交叉,每家成员单位指定一名代表,参与联合体工作,并本着“协同发展、利益共享、横向联合、纵向融通”原则,凝聚力量、协同创新,为企业提供智能矿山服务。

“智能矿山协同创新联合体”近期将开展6个方面的工作:一是宣传贯彻国家智能矿山建设相关方针政策,组织开展智能矿山建设科技理论与应用研究;二是组织开展政府主管部门和矿山企业委托的智能矿山建设标准化建设工作;三是组织开展智能矿山第三方服务机构创新能力和技术服务能力评价;四是组织开展智能矿山科技成果、示范项目征集和推广;五是协调金融、融资租赁机构建立智能矿山投融资平台,举办项目、产品、投融资对接会;六是建立会员单位联络制度,组织开展企业间的技术交流和商务合作。

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-2-296.shtml

Chen Zhen Tang Jun Liao Huanyu al et2016.A method for obtaining the intersections in triangular mesh model based on the surface equation[J].Geomatics and Spatial Information Technology39(3):62-64.

Hou Zhigang2020.Research and application of 3D geological modeling of Erma iron deposit in Qian’an Hebei Province [J].Modern Mining36(6):58-60,64.

Huang Zhi Zhang Zhelun Zhang Feng al et2014.Union algorithm for polygon set based on multi-level grid[J].Journal of Zhejiang University (Science Edition)41(1):108-112.

Jia Xiaoyan Xie Xiaohua Sun Bei2011.A fast method for extracting the visible contour of triangular meshes [C/OL]//The 30th China Control Conference.Yantai:China Automatic Chemical Control Theory Committee.

Jiang Xiaoqin Yan Haowen Wang Zhonghui2015.An algorithm for difference of two arbitrary polygons[J].Surveying and Spatial Geographic Information38(9):66-68,71.

Jiang Xudong Sheng Bin Ma Lizhuang al et2016.Optimization of set operations on triangulated polyhedrons using adaptive lazy splitting[J].Journal of Software27(10):2473-2487.

Jing Yongbin Wang Gongzhong Sun Guangzhong2016.3D reconstruction of complex ore-body model based on 2D contours [J].Metal Mine,(11):124-127.

Lai Guangling Tong Xiaochong Ding Lu2018.Multiscale integer coding and data index of 3D spatial grid[J].Journal of Geodesy and Geoinformation Science47(7):1007-1017.

Li Dan Xiong Xiaojun Zhang Wencan al et2013.Research on 3D modeling method of complex ore body[J].Science and Technology Innovation Herald,(22):75-76.

Li Ning Tian Zhen Zhang Lihua al et2013.Optimization algorithm for triangular mesh surface intersection[J].Journal of Liaoning Technical University (Natural Science)32(9):1269-1273.

Ruan Menggui Zhang Yujin2010.A fast algorithm for Boolean operations on arbitrary polygons [C]//Proceddings of the 15th National Conference on Image and Graphics. Beijing:Tsinghua University Press.

Shi Yongfeng Zhang Yuhao Cheng Ting al et2019.Surface segmentation algorithm based on spatial polygon triangulation [J].Journal of Graphics40(3):447-451.

Tan Zhenghua Tan Jiaoyue Pan Mei al et2017.A method for high quality orebody surface 3D reconstruction based on space contours [J].Gold Science and Technology25(2):96-103.

Wang Huiqing Chong Suwen2016.A high efficient polygon clipping algorithm for dealing with intersection degradation [J].Journal of Southeast University (Natural Science Edition)46(4):702-707.

Wu Fukun Xiao Li Wang Huawei2019.A complex geometric surface extracting method for large-scale volumetric data [J].Journal of Computer-Aided Design & Computer Graphics31(11):1908-1916.

Xu Jinghua Sheng Hongsheng Zhang Shuyou al et2018.A method of constructing layered multi-connected domains for manifold mesh model based on adjacency topology[J].Journal of Computer-Aided Design & Computer Graphics30(1):180-190.

Yang Yang Liu Xuejun Xiao Fei2016.Quickly fusion algorithm of complex polygons and its implementation[J].Geospatial Information14(3):52-55,8.

Yao Xiao Qiu Qiang Xiao Zhuojian al et2018.Research on vector polygon intersection algorithm in spark framework [J].Chinese High Technology Letters28(6):500-507.

Zhang Huaxin Liu Nan Liu Renyi2011.Cascaded union algorithm for polygon set based on grid[J].Computer Engineering37(6):38-40.

Zhong D Y Wang L G Bi L2019.Implicit modeling of complex ore body with constraints of geological rules[J].Transactions of Nonferrous Metals Society of China,(11):2392-2399.

陈振,汤军,廖环宇,等,2016.基于曲面方程的三角形网格模型求交方法[J].测绘与空间地理信息39(3):62-64.

侯志刚,2020.河北迁安二马铁矿床三维地质建模研究及应用[J].现代矿业36(6):58-60,64.

黄志,张哲伦,张丰,等,2014.基于多级格网的多边形集合求并算法研究[J].浙江大学学报(理学版)41(1):108-112.

贾晓彦,解小华,孙备,2011.三角网格曲面可视轮廓提取的快速算法[C/OL]//第三十届中国控制会议.烟台:中国自动化学控制理论专业委员会.

姜晓琴,闫浩文,王中辉,2015.一种任意简单多边形求差算法[J].测绘与空间地理信息38(9):66-68,71.

姜旭东,盛斌,马利庄,等,2016.基于自适应延迟切割的三角网格布尔运算优化[J].软件学报27(10):2473-2487.

荆永滨,王公忠,孙光中,2016.复杂矿体三维模型二维轮廓线重建方法[J].金属矿山,(11):124-127.

赖广陵,童晓冲,丁璐,等,2018.三维空间格网的多尺度整数编码与数据索引方法[J].测绘学报47(7):1007-1017.

李丹,熊晓军,张文璨,等,2013.复杂矿体的三维建模方法研究[J].科技创新导报,(22):75-76.

李宁,田震,张立华,等,2013.优化的三角网格曲面求交算法[J].辽宁工程技术大学学报(自然科学版)32(9):1269-1273.

阮孟贵,章毓晋,2010.任意多边形布尔运算的快速算法[C]//第十五届全国图像图形学学术会议论文集.北京:清华大学出版社.

史永丰,张育浩,程婷,等,2019.基于空间多边形三角剖分的曲面分割求交算法[J].图学学报40(3):447-451.

谭正华,谭皎月,潘梅,等,2017.基于空间轮廓线的高质量矿体表面三维重构方法[J].黄金科学技术25(2):96-103.

王慧青,崇素文,2016.一种处理交点退化现象的高效多边形裁剪算法[J].东南大学学报(自然科学版)46(4):702-707.

吴付坤,肖丽,王华维,2019.面向大规模体数据集的复杂几何曲面抽取方法[J].计算机辅助设计与图形学学报31(11):1908-1916.

徐敬华,盛红升,张树有,等,2018.基于邻接拓扑的流形网格模型层切多连通域构建方法[J].计算机辅助设计与图形学学报30(1):180-190.

杨洋,刘学军,肖斐,2016.复杂多边形快速融合算法与实现[J].地理空间信息14(3):52-55,8.

姚晓,邱强,肖茁建,等,2018.Spark框架下矢量多边形求交算法研究[J].高技术通讯28(6):500-507.

张华鑫,刘南,刘仁义,2011.基于格网的多边形集合级联求并算法[J].计算机工程37(6):38-40.

Outlines

/

[an error occurred while processing this directive]