[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Research on Obtaining Average Wind Speed of Roadway Based on GRU Neural Network

  • Liangshan SHAO , 1, 2 ,
  • Shuangshuang WEN , 1, 2
Expand
  • 1. Institute of Management Science and Engineering,Liaoning Technical University,Huludao 125105,Liaoning,China
  • 2. School of Business Administration,Liaoning Technical University,Huludao 125105,Liaoning,China

Received date: 2021-05-09

  Revised date: 2021-08-27

  Online published: 2021-12-17

Highlights

With the advent of the intelligent era, computer simulation algorithms such as machine learning and deep learning have played a role in many fields such as aerospace, medical treatment, education and communication. For the traditional industry of mining, the concept of smart mine has become a research hotspot of relevant researchers in recent years. Intelligent technologies such as machine learning have been used in pedestrian detection, gas prediction, coal rock identification has been successfully applied to practical production, but the intelligent acquisition of parameters in intelligent ventilation system is still in a blank. Therefore, under the background of smart mine, aiming at the problem that the mine intelligent ventilation system can’t obtain the wind speed in time and then complete the subsequent ventilation system solution and optimization, the training set required by the neural network is obtained by using the simulation of tunnel wind speed distribution in ANSYS. Based on manual measurement and wind speed sensor monitoring data, the prediction model of roadway average wind speed based on gated recurrent unit neural network was constructed. Firstly, the neural network model was proposed, and then the Adam optimization algorithm was used to preprocess the data such as outlier processing and normalization. After the structural processing of the wind speed at the monitoring points of the roadway with different shapes, it was used to train the neural network to find out the strong nonlinear relationship between the wind speed at each point and the average wind speed, so that the predicted wind speed is close to the actual average wind speed of the roadway. Finally, the prediction model of roadway average wind speed based on GRU neural network was constructed. Taking the measured data of Wangjialing coal mine as the model test set, the results show that the GRU neural network model has high precision and strong generalization ability, and can obtain the average wind speed of roadway, which will provide a roadway average wind speed prediction model with advanced technology, scientific process and accurate results for the mine intelligent ventilation system. Moreover, the strong prediction ability of in-depth learning will provide intelligent data for the solution and optimization of ventilation network, it can be extended to the acquisition of ventilation parameters in other metal mines to popularize the intelligent acquisition of ventilation parameters.

Cite this article

Liangshan SHAO , Shuangshuang WEN . Research on Obtaining Average Wind Speed of Roadway Based on GRU Neural Network[J]. Gold Science and Technology, 2021 , 29(5) : 709 -718 . DOI: 10.11872/j.issn.1005-2518.2021.05.054

[an error occurred while processing this directive]

山东黄金“5G+Cloud+AI赋能世界级黄金基地”项目再获大奖

近日,首届中国新型智慧城市创新应用大赛决赛落下帷幕,山东黄金“5G+Cloud+AI赋能世界级黄金基地”项目脱颖而出,喜获一等奖。

本次大赛由国家信息中心指导、山东省大数据局主办,开设了数字政府(优政)、数字社会(惠民)、数字经济(兴业)和新基建(强基)4个赛道。经过线上初赛评审、线上复赛评审等多轮筛选,246个优秀项目成功晋级全国总决赛。

此次参赛项目——“5G赋能世界级莱州黄金基地建设”,围绕“安全开采、智能选矿、绿色冶炼、智慧决策”四大领域开展5G+Cloud+AI整体性应用,落地规模覆盖36个应用场景、24个项目方案和61个通用产品。

“十四五”期间,山东黄金将围绕“数字化转型、智能化升级”总目标,主动适应智能矿山的发展潮流趋势,加强与中国移动、华为等科技公司的合作攻关,以数字化转型引领高质量发展。

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-5-709.shtml

Cao Long Yang Min2021.Key technology of intelligent ventilation in metal mines [J]. World Nonferrous Metals, (12):100-101.

Chen Long Wang Xiao Yang Jianjian al et2021. Parallel mining operating systems: from digital twins to mining intelligence [J]. Acta Automatica Sinica47(7):1633-1645.

Cheng Li Liu Huanxin Zhu Mingde al et2020.Current situation and prospect of research on underground goaf in metal mines [J]. Gold Science and Technology28(1):70-81.

Cho K Van Merriënboer B Bahdanau D al et2014.On the properties of neural machine translation:Encoder-decoder approaches[J].arXiv:1409.1259. DOI:10.3115/v1/W14-4012.

Ding Cui He Xueqiu Nie Baisheng2015.Numerical and experimental research on the “Key Ring” of airflow distribution in mine ventilation tunnels[J].Journal of Liaoning Technical University (Natural Science Edition)34(10):1131-1136.

Hao Yuanwei Chen Kaiyan Jiang Zhongcheng al et2011.Correction processing of roadway wind speed monitoring value based on CFD simulation [J].Coal Mine Safety42(2):1-3,7.

Hochreiter S Schmidhuber J1997.Long short-term memory[J].Neural computation9(8):1735-1780.

Hu Jianhua Hang Long Wang Xueliang al et2018.Platform structure for intelligent underground mining system its construction [J]. Mining and Metallurgical Engineering38(6):1-5.

Kingma D P Ba J2014.Adam:A method for stochastic optimization[J].arXiv: 1412.6980 v8.

Li Man Ma Huan2017.Simulation study on air volume test method of mine main fan[J].Coal Science and Technology45(2):151-155.

Li Xibing Cao Zhiwei Zhou Jian al et2019.Innovation of mining models and construction of intelligent green mine in hard rock mine :In Kaiyang phosphate mine as an example [J]. The Chinese Journal of Nonferrous Metals29(10):2364-2380.

Li Xuebing Liu Jian Song Ying al et2018.Conversion mechanism between single-point wind speed and average wind speed in the section of shaft[J].Journal of Safety and Environment18(1):123-128.

Liu Xiaoming Deng Lei Wang Liguan al et2020.Intelligent mine master plan for underground metal mine[J]. Gold Science and Technology28(2):309-316.

Lu Xinming Yin Hong2020.Theory and technology of mine ventilation intelligentization[J].Journal of China Coal Society,2020,45(6):2236-2247.

Luo Guang2020.Research on the Distribution Law of Wind Speed and Precise Monitoring of Air Volume in Typical Roadway Section[D].Beijing:Coal Science Research Institute.

Shao Liangshan Yu Baocai Chen Xiaoyong2020.Key technology of mine intelligent ventilation[J].Coal Mine Safety51(11):121-124.

Song Ying Liu Jian Li Xuebing al et2016.Experimental and simulation study on the distribution law of average wind speed of mine tunnel[J].Chinese Safety Science Journal26(6):146-151.

Wang En Zhang Lang Li Wei al et2016.Multi-point mobile wind measurement device and key technology[J].Coal Mi-ne Safety47(6):97-99,103.

Wang Hanfeng2015.Simulation research on location monitoring based on average wind speed of Fluent roadway section[J].Coal Science and Technology43(8):92-96.

Wang Jun Chen Kaiyan Huang Shuai2013.Single-point measurement of average wind speed in mine tunnel based on CFD numerical simulation[J].Coal Mine Safety44(3):144-146.

Wu Xinzhong Zhang Zhichao Xu Jialin al et2021.Research on intelligent air volume regulation in mines [J].Industry and Mine Automation47(4):44-50.

Yan Hang Chen Gang Tong Yao al et2021.Human rehabilitation motion recognition based on pose estimation and GRU network [J].Computer Engineering47(1):12-20.

Zhang Lang2018.Optimization of the measurement position of the average wind speed of the wind speed sensor in the wind. measuring station in the roadway[J].Coal Science and Technology46(3):96-102.

Zhang Zhichang Zhou Dong Zhang Ruifang al et2020.Medical entity relationship recognition based on bidirectional GRU and attentional mechanism[J].Computer Engineering46(6):296-302.

Zhao Dan Huang Fujun Chen Shuai al et2014.The relationship between point wind speed and average wind speed in a circular tunnel[J].Journal of Liaoning Technical University (Natural Science Edition)33(12):1654-1659.

Zhao Dan Pan Jingtao Liu Jian2011.The average wind speed in the roadway is derived from the measured value of the wind speed sensor based on one-variable linear regression [J].World Science and Technology Research and Development33(2):229-231,241.

Zhao Wei Li Wei Huang Shuwei al et2018.Construction and practice of intelligent green mine for Sanshandao gold mine [J]. Gold Science and Technology26(2):219-227.

Zhou Xihua Meng Le Li Chengyu al et2012.Experimental research on wind speed. measurement and correction method for circular duct[J].Journal of Liaoning Technical University (Natural Science Edition)31(5):594.

曹龙,杨敏,2021.金属矿山矿井智能通风关键技术[J].世界有色金属, (12):100-101.

陈龙,王晓,杨健健,等,2021.平行矿山:从数字孪生到矿山智能[J].自动化学报47(7):1633-1645.

程力,刘焕新,朱明德,等,2020.金属矿山地下采空区问题研究现状与展望[J].黄金科学技术28(1):70-81.

丁翠,何学秋,聂百胜,2015.矿井通风巷道风流分布“关键环”数值与实验研究[J].辽宁工程技术大学学报(自然科学版)34(10):1131-1136.

郝元伟,陈开岩,蒋中承,等,2011.基于CFD模拟的巷道风速监测值修正处理[J].煤矿安全42(2):1-3,7.

胡建华,张龙,王学梁,等,2018.井下矿山智能采矿体系的平台架构研究与实现[J].矿冶工程38(6):1-5.

李曼,马欢,2017.矿井主通风机风量测试方法的模拟研究[J].煤炭科学技术45(2):151-155.

李夕兵,曹芝维,周健,等,2019.硬岩矿山开采方式变革与智能化绿色矿山构建——以开阳磷矿为例[J].中国有色金属学报29(10):2364-2380.

李雪冰,刘剑,宋莹,等,2018.井巷断面内单点风速与平均风速转换机制[J].安全与环境学报18(1):123-128.

刘晓明,邓磊,王李管,等,2020.地下金属矿智能矿山总体规划[J].黄金科学技术28(2):309-316.

卢新明,尹红,2020.矿井通风智能化理论与技术[J].煤炭学报45(6):2236-2247.

罗广,2020.典型巷道断面风速分布规律及风量精准监测研究[D].北京:煤炭科学研究总院.

邵良杉,于保才,陈晓永,2020.矿井智能通风关键技术[J].煤矿安全51(11):121-124.

宋莹,刘剑,李雪冰,等,2016.矿井巷道风流平均风速分布规律的试验与模拟研究[J].中国安全科学学报26(6):146-151.

王恩,张浪,李伟,等,2016.多点移动式测风装置及关键技术[J].煤矿安全47(6):97-99,103.

王翰锋,2015.基于Fluent巷道断面平均风速点定位监测模拟研究[J].煤炭科学技术43(8):92-96.

王军,陈开岩,黄帅,2013.基于CFD数值模拟的矿井巷道平均风速单点测法[J].煤矿安全44(3):144-146.

吴新忠,张芝超,许嘉琳,等,2021.矿井智能风量调节研究[J].工矿自动化47(4):44-50.

闫航,陈刚,佟瑶,等,2021.基于姿态估计与GRU网络的人体康复动作识别[J].计算机工程47(1):12-20.

张浪,2018.巷道测风站风速传感器平均风速测定位置优化研究[J].煤炭科学技术46(3):96-102.

张志昌,周侗,张瑞芳,等,2020.融合双向GRU与注意力机制的医疗实体关系识别[J].计算机工程46(6):296-302.

赵丹,黄福军,陈帅,等,2014.点风速与平均风速在圆形巷道中的关系[J].辽宁工程技术大学学报(自然科学版)33(12):1654-1659.

赵丹,潘竞涛,刘剑,2011.基于一元线性回归由风速传感器测量值推导巷道平均风速[J].世界科技研究与发展33(2):229-231,241.

赵威,李威,黄树巍,等,2018.三山岛金矿智能绿色矿山建设实践[J].黄金科学技术26(2):219-227.

周西华,孟乐,李诚玉,等,2012.圆形管道风速测定与校正方法实验研究[J].辽宁工程技术大学学报(自然科学版)31(5):594.

Outlines

/

[an error occurred while processing this directive]