Research on Obtaining Average Wind Speed of Roadway Based on GRU Neural Network
Received date: 2021-05-09
Revised date: 2021-08-27
Online published: 2021-12-17
With the advent of the intelligent era, computer simulation algorithms such as machine learning and deep learning have played a role in many fields such as aerospace, medical treatment, education and communication. For the traditional industry of mining, the concept of smart mine has become a research hotspot of relevant researchers in recent years. Intelligent technologies such as machine learning have been used in pedestrian detection, gas prediction, coal rock identification has been successfully applied to practical production, but the intelligent acquisition of parameters in intelligent ventilation system is still in a blank. Therefore, under the background of smart mine, aiming at the problem that the mine intelligent ventilation system can’t obtain the wind speed in time and then complete the subsequent ventilation system solution and optimization, the training set required by the neural network is obtained by using the simulation of tunnel wind speed distribution in ANSYS. Based on manual measurement and wind speed sensor monitoring data, the prediction model of roadway average wind speed based on gated recurrent unit neural network was constructed. Firstly, the neural network model was proposed, and then the Adam optimization algorithm was used to preprocess the data such as outlier processing and normalization. After the structural processing of the wind speed at the monitoring points of the roadway with different shapes, it was used to train the neural network to find out the strong nonlinear relationship between the wind speed at each point and the average wind speed, so that the predicted wind speed is close to the actual average wind speed of the roadway. Finally, the prediction model of roadway average wind speed based on GRU neural network was constructed. Taking the measured data of Wangjialing coal mine as the model test set, the results show that the GRU neural network model has high precision and strong generalization ability, and can obtain the average wind speed of roadway, which will provide a roadway average wind speed prediction model with advanced technology, scientific process and accurate results for the mine intelligent ventilation system. Moreover, the strong prediction ability of in-depth learning will provide intelligent data for the solution and optimization of ventilation network, it can be extended to the acquisition of ventilation parameters in other metal mines to popularize the intelligent acquisition of ventilation parameters.
Liangshan SHAO , Shuangshuang WEN . Research on Obtaining Average Wind Speed of Roadway Based on GRU Neural Network[J]. Gold Science and Technology, 2021 , 29(5) : 709 -718 . DOI: 10.11872/j.issn.1005-2518.2021.05.054
山东黄金“5G+Cloud+AI赋能世界级黄金基地”项目再获大奖
近日,首届中国新型智慧城市创新应用大赛决赛落下帷幕,山东黄金“5G+Cloud+AI赋能世界级黄金基地”项目脱颖而出,喜获一等奖。
本次大赛由国家信息中心指导、山东省大数据局主办,开设了数字政府(优政)、数字社会(惠民)、数字经济(兴业)和新基建(强基)4个赛道。经过线上初赛评审、线上复赛评审等多轮筛选,246个优秀项目成功晋级全国总决赛。
此次参赛项目——“5G赋能世界级莱州黄金基地建设”,围绕“安全开采、智能选矿、绿色冶炼、智慧决策”四大领域开展5G+Cloud+AI整体性应用,落地规模覆盖36个应用场景、24个项目方案和61个通用产品。
“十四五”期间,山东黄金将围绕“数字化转型、智能化升级”总目标,主动适应智能矿山的发展潮流趋势,加强与中国移动、华为等科技公司的合作攻关,以数字化转型引领高质量发展。
http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-5-709.shtml
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
曹龙,杨敏,2021.金属矿山矿井智能通风关键技术[J].世界有色金属, (12):100-101.
|
陈龙,王晓,杨健健,等,2021.平行矿山:从数字孪生到矿山智能[J].自动化学报 ,47(7):1633-1645.
|
程力,刘焕新,朱明德,等,2020.金属矿山地下采空区问题研究现状与展望[J].黄金科学技术, 28(1):70-81.
|
丁翠,何学秋,聂百胜,2015.矿井通风巷道风流分布“关键环”数值与实验研究[J].辽宁工程技术大学学报(自然科学版),34(10):1131-1136.
|
郝元伟,陈开岩,蒋中承,等,2011.基于CFD模拟的巷道风速监测值修正处理[J].煤矿安全, 42(2):1-3,7.
|
胡建华,张龙,王学梁,等,2018.井下矿山智能采矿体系的平台架构研究与实现[J].矿冶工程 ,38(6):1-5.
|
李曼,马欢,2017.矿井主通风机风量测试方法的模拟研究[J].煤炭科学技术,45(2):151-155.
|
李夕兵,曹芝维,周健,等,2019.硬岩矿山开采方式变革与智能化绿色矿山构建——以开阳磷矿为例[J].中国有色金属学报, 29(10):2364-2380.
|
李雪冰,刘剑,宋莹,等,2018.井巷断面内单点风速与平均风速转换机制[J].安全与环境学报,18(1):123-128.
|
刘晓明,邓磊,王李管,等,2020.地下金属矿智能矿山总体规划[J].黄金科学技术,28(2):309-316.
|
卢新明,尹红,2020.矿井通风智能化理论与技术[J].煤炭学报,45(6):2236-2247.
|
罗广,2020.典型巷道断面风速分布规律及风量精准监测研究[D].北京:煤炭科学研究总院.
|
邵良杉,于保才,陈晓永,2020.矿井智能通风关键技术[J].煤矿安全,51(11):121-124.
|
宋莹,刘剑,李雪冰,等,2016.矿井巷道风流平均风速分布规律的试验与模拟研究[J].中国安全科学学报, 26(6):146-151.
|
王恩,张浪,李伟,等,2016.多点移动式测风装置及关键技术[J].煤矿安全, 47(6):97-99,103.
|
王翰锋,2015.基于Fluent巷道断面平均风速点定位监测模拟研究[J].煤炭科学技术,43(8):92-96.
|
王军,陈开岩,黄帅,2013.基于CFD数值模拟的矿井巷道平均风速单点测法[J].煤矿安全,44(3):144-146.
|
吴新忠,张芝超,许嘉琳,等,2021.矿井智能风量调节研究[J].工矿自动化,47(4):44-50.
|
闫航,陈刚,佟瑶,等,2021.基于姿态估计与GRU网络的人体康复动作识别[J].计算机工程,47(1):12-20.
|
张浪,2018.巷道测风站风速传感器平均风速测定位置优化研究[J].煤炭科学技术,46(3):96-102.
|
张志昌,周侗,张瑞芳,等,2020.融合双向GRU与注意力机制的医疗实体关系识别[J].计算机工程,46(6):296-302.
|
赵丹,黄福军,陈帅,等,2014.点风速与平均风速在圆形巷道中的关系[J].辽宁工程技术大学学报(自然科学版),33(12):1654-1659.
|
赵丹,潘竞涛,刘剑,2011.基于一元线性回归由风速传感器测量值推导巷道平均风速[J].世界科技研究与发展,33(2):229-231,241.
|
赵威,李威,黄树巍,等,2018.三山岛金矿智能绿色矿山建设实践[J].黄金科学技术, 26(2):219-227.
|
周西华,孟乐,李诚玉,等,2012.圆形管道风速测定与校正方法实验研究[J].辽宁工程技术大学学报(自然科学版),31(5):594.
|
/
〈 |
|
〉 |