[an error occurred while processing this directive] [an error occurred while processing this directive] [an error occurred while processing this directive]
[an error occurred while processing this directive]
Mining Technology and Mine Management

Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine

  • Xuan FU ,
  • Linqi HUANG ,
  • Jiangzhan CHEN ,
  • Yangchun WU ,
  • Xibing LI
Expand
  • School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

Received date: 2021-10-29

  Revised date: 2021-12-22

  Online published: 2022-04-25

Highlights

In order to meet the challenge of the high ground temperature environment of deep mining,realize the real simulation of the environment,and improve the high ground stress-high ground temperature coupling capability of the true triaxial test equipment,the research and development of the ground temperature simulation platform of the rock true triaxial test machine has been carried out. The exploration and establishment of three kinds of heating schemes for the ground temperature simulation platform are the six-sided heating rod heating scheme based on solid medium heat transfer,the ring heater heating scheme and the liquid heat transfer heating scheme based on liquid medium heat transfer. Through the establishment of a true triaxial high ground stress-high ground temperature coupled loading program evaluation system combining numerical simulation (COMSOL),coefficient of variation method (RSD) and ideal solution for multi-attribute decision-making problems (TOPSIS),comprehensive indicators for three heating programs evaluation and scheme optimization. In order to obtain the best test results close to reality,the five basic evaluations of the quality of the evaluation plan are the uniformity of heating on the rock surface,the heat dissipation from the outside of the pressurized rod,the average heating rate of the rock sample,the strain value of the pressurized plate and the economic cost index. The COMSOL Multiphysics simulation software was used to simulate three heating schemes. Through the coefficient of variation method,the simulated data were objectively assigned,and the corresponding index values ​​were brought into the TOPSIS model for comprehensive evaluation. The evaluation results show that the comprehensive evaluation indexes of the three schemes of six-sided heating rod heating,ring heater heating,and liquid heat transfer heating are 0.4288,0.9447 and 0.5532,respectively. The heating method of the ring heater is consistent with a positive ideal solution. The closeness degree reaches 0.9447,which is the optimal decision after comprehensively considering the five indicators. This evaluation system combines theoretical methods,numerical calculations and numerical simulations,and provides a reliable theoretical basis and experimental basis for finding the optimal heating scheme for true triaxial test equipment. The instrumental research on the coupling capability of ground temperature is of guiding significance.

Cite this article

Xuan FU , Linqi HUANG , Jiangzhan CHEN , Yangchun WU , Xibing LI . Meeting the Challenge of High Geothermal Ground Temperature Environ-ment in Deep Mining—Research on Geothermal Ground Temperature Simula-tion Platform of Rock True Triaxial Testing Machine[J]. Gold Science and Technology, 2022 , 30(1) : 72 -84 . DOI: 10.11872/j.issn.1005-2518.2022.01.160

[an error occurred while processing this directive]

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-1-72.shtml

Chen B Ren Q Y Wang F F al et2021. Inversion analysis of in-situ stress field in tunnel fault zone considering high geothermal[J]. Geotechnical and Geological Engineering,39:5007-5019.

Frash LP Gutierrez M Hampton J2014. True-triaxial apparatus for simulation of hydraulically fractured multi-borehole hot dry rock reservoirs[J]. International Journal of Rock Mechanics and Mining Sciences,70:496-506.

Gong Jian Hu Nailian Cui Xiang al et2014. Prediction of rockburst tendency based on AHP-TOPSIS evaluation model[J]. Chinese Journal of Rock Mechanics and Engineering33(7):1442-1448.

Hao Zhenxing2017. Research on Temperature Control System of High Temperature True Three-axis Press Based on Embedded[D]. Taiyuan:Taiyuan University of Technology.

He M C Wang Q Wu Q Y2021. Innovation and future of mining rock mechanics[J].Journal of Rock Mechanics and Ge-otechnical Engineering13(1):1-21.

He Manchao Xie Heping Peng Suping al et2009. Research on deep mining rock mass mechanics[C]//Research Progress of Soft Rock Engineering and Deep Disaster Control in China——The 4th Deep Rock Mechanics and Engineering Disaster Control Symposium and China University of Mining and Technology(Beijing) Centennial Anniversary Academic Conference Proceedings.Xuzhou:China University of Mining and Technology: 10-19.

Hu Sherong Peng Jichao Huang Can al et2011. Current status and progress of research on deep mine mining more than one thousand meters[J].China Mining Industry20(7):105-110.

Jiang T T Zhang J H Wu H2016. Experimental and numerical study on hydraulic fracture propagation in coalbed methane reservoir[J]. Journal of Natural Gas Science and Engineering,35:455-467.

Li Xibing2014. Foundation and Application of Rock Dynamics[M]. Beijing:Science Press.

Li Xibing Gong Fengqiang2021. Research progress and prospects of rock mechanics in deep mining based on combined dynamic and static loading tests[J]. Journal of China Coal Society46(3):846-866.

Li Xibing Gong Fengqiang Du Kun al et2016. Progress report on experimental research of rockburst under high-stress rock mass dynamic disturbance[J]. Science & Technology Innovation Herald13(15):173.

Li Xibing Huang Linqi Zhou Jian al et2019. Review and prospect of hard rock mining technology[J]. The Chinese Journal of Nonferrous Metals29(9):1828-1847.

Li Xibing Liu Bing2018. Review and exploration on the status quo of backfill mining in hard rock mines[J].Gold Science and Technology26(4):492-502.

Li Xibing Yao Jinrui Gong Fengqiang2011. Dynamic problems in deep mining of hard rock metal mines[J].The Chinese Journal of Nonferrous Metals21(10):2551-2563.

Li Xibing Zhou Jian Huang Linqi al et2020. Review and pro-spects of China’s gold mining technology[J].Gold41(9):41-50.

Ma Jianxiong Xue Linfu Zhao Jinmin al et2019. Numerical simulation of temperature field in in-situ mining of oil shale[J]. Science Technology and Engineering19(5):94-103.

Ma Xiao Ma Dongdong Hu Dawei al et2019. Development and application of real-time high-temperature true triaxial test system[J].Chinese Journal of Rock Mechanics and Engineering38(8):1605-1614.

Nasseri M Goodfellow S Lombos L al et2014. 3-D transport and acoustic properties of fontainebleau sandstone during true-triaxial deformation experiments[J].International Jou-rnal of Rock Mechanics and Mining Sciences,69:1-18.

Niu Xuechao Zhang Qingxi Yue Zhongwen2013.Current situation and development trend of rock triaxial testing machine[J].Rock and Soil Mechanics34(2):600-607.

Qin Hong Zhang Xin Bai Jingru al et2014. Experimental study on temperature distribution in oil shale gas heat carrier dry distillation furnace[J].Chemical Machinery41(6):727-732.

Ren Aihua1988. Newly developed 800t high temperature and high pressure servo triaxial rheometer[J]. Chinese Journal of Geophysics,(2):236.

Ren Song Yang Chunhe Jiang Deyi al et2011. Development and application of high-temperature triaxial salt rock dissolution characteristics testing machine[J]. Chinese Journal of Rock Mechanics and Engineering30(2):289-295.

Shi Liangqi Song Ruiqing Wu Xiuquan1986.Development of high pressure and temperature triaxial experimental vessels used with either gas or liquid media[J]. Chinese Journal of Rock Mechanics and Engineering,(3):301-308.

Shi Zequan Zhou Meiqing1990. Design of 800MPa high temperature and high pressure triaxial chamber[J].Chinese Jou-rnal of Geophysics,(2):202-207.

Wang Yunmin2011. Opportunities and challenges faced by the metal mining industry and technical countermeasures[J]. Modern Mining27(1):1-14.

Xie Heping Gao Feng Ju Yang2015. Research and exploration of deep rock mass mechanics[J].Chinese Journal of Rock Mechanics and Engineering34(11):2161-2178.

Yin Guangzhi Li Minghui Xu Jiang al et2015. Development and application of a multifunctional true triaxial fluid-solid coupling test system[J]. Chinese Journal of Rock Mechanics and Engineering34(12):2436-2445.

Zhao Wei Lin Jian Wang Shufang al et2013. Influence of human activities on groundwater environment based on coefficient variation method[J]. Environmental Science34(4):1277-1283.

Zhao Yangsheng Wan Zhijun Zhang Yuan al et2008.Develo-pment of a 20MN servo-controlled high-temperature and high-pressure rock mass triaxial testing machine[J].Chine-se Journal of Rock Mechanics and Engineering194(1):1-8.

龚剑,胡乃联,崔翔,等,2014.基于AHP-TOPSIS评判模型的岩爆倾向性预测[J].岩石力学与工程学报33(7):1442-1448.

郝振兴,2017. 基于嵌入式的高温真三轴压力机温度控制系统研究[D]. 太原:太原理工大学.

何满潮,谢和平,彭苏萍,等,2009. 深部开采岩体力学研究[C]//中国软岩工程与深部灾害控制研究进展——第四届深部岩体力学与工程灾害控制学术研讨会暨中国矿业大学(北京)百年校庆学术会议论文集.徐州:中国矿业大学: 10-19.

胡社荣,彭纪超,黄灿,等,2011. 千米以上深矿井开采研究现状与进展[J]. 中国矿业20(7):105-110.

李夕兵,2014.岩石动力学基础与应用[M].北京:科学出版社.

李夕兵,宫凤强,2021. 基于动静组合加载力学试验的深部开采岩石力学研究进展与展望[J]. 煤炭学报46(3):846-866.

李夕兵,宫凤强,杜坤,等,2016. 高应力岩体动力扰动下发生岩爆的试验研究进展报告[J]. 科技创新导报13(15):173.

李夕兵,黄麟淇,周健,等,2019. 硬岩矿山开采技术回顾与展望[J]. 中国有色金属学报29(9):1828-1847.

李夕兵,刘冰,2018.硬岩矿山充填开采现状评述与探索[J].黄金科学技术26(4):492-502.

李夕兵,姚金蕊,宫凤强,2011. 硬岩金属矿山深部开采中的动力学问题[J].中国有色金属学报21(10):2551-2563.

李夕兵,周健,黄麟淇,等,2020.中国黄金矿山开采技术回顾与展望[J]. 黄金41(9):41-50.

马建雄,薛林福,赵金岷,等,2019. 油页岩原位开采温度场的数值模拟[J]. 科学技术与工程19(5):94-103.

马啸,马东东,胡大伟,等,2019. 实时高温真三轴试验系统的研制与应用[J]. 岩石力学与工程学报38(8):1605-1614.

牛学超,张庆喜,岳中文,2013.岩石三轴试验机的现状及发展趋势[J].岩土力学34(2):600-607.

秦宏,张鑫,柏静儒,等,2014. 油页岩气体热载体干馏炉内温度分布的试验研究[J]. 化工机械41(6):727-732.

任爱华,1988. 新研制的800t高温高压伺服三轴流变仪[J]. 地球物理学报,(2):236.

任松,杨春和,姜德义,等,2011. 高温三轴盐岩溶解特性试验机研制及应用[J]. 岩石力学与工程学报30(2):289-295.

施良骐,宋瑞卿,吴秀泉,1986.气液两用高温高压岩石三轴实验容器的研制[J].岩石力学与工程学报,(3):301-308.

石泽全,周枚青,1990. 800MPa高温高压三轴室设计研究[J]. 地球物理学报,(2):202-207.

王运敏,2011. 金属矿采矿工业面临的机遇和挑战及技术对策[J]. 现代矿业27(1):1-14.

谢和平,高峰,鞠杨,2015. 深部岩体力学研究与探索[J]. 岩石力学与工程学报34(11):2161-2178.

尹光志,李铭辉,许江,等,2015. 多功能真三轴流固耦合试验系统的研制与应用[J]. 岩石力学与工程学报34(12):2436-2445.

赵微,林健,王树芳,等,2013. 变异系数法评价人类活动对地下水环境的影响[J]. 环境科学34(4):1277-1283.

赵阳升,万志军,张渊,等,2008. 20MN伺服控制高温高压岩体三轴试验机的研制[J]. 岩石力学与工程学报194(1):1-8.

Outlines

/

[an error occurred while processing this directive]