img

Wechat

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • Founded in 1988
Adv. Search
Mining Technology and Mine Management

Application of Local Refrigeration and Cooling Technology in Underground Long-distance Excavation Tunnel

  • Zhonglei GUO ,
  • Yu CUI ,
  • Chunlong WANG
Expand
  • 1.School of Resources and Environmental Engineering, Shandong University of Technology, Zibo 255049, Shan-dong, China
    2.Shandong Gold Group Co. , Ltd. , Jinan 250100, Shandong, China

Received date: 2024-07-05

  Revised date: 2024-08-20

  Online published: 2024-09-19

Abstract

As the issue of elevated temperatures in deep mining operations becomes increasingly significant,the implementation of cooling technologies has become widespread.Among these,water source heat pump cooling technology,which utilizes low-temperature subterranean water as a cooling source,offers distinct advantages over traditional ice cooling and air conditioning systems.Specifically,it is characterized by superior energy efficiency,environmental sustainability,and operational effectiveness.The west wing excavation tunnel of the Linglong gold mine at the -750 m section is influenced by factors such as inlet air temperature,ground temperature,and equipment heat dissipation,leading to a working face temperature of up to 37 ℃.Efforts to mitigate this by increasing the inlet air volume and altering the ventilation method,have proven ineffective in significantly reducing the working face temperature.To address this issue,this study leverages the presence of substantial low-temperature groundwater, conducts an analysis of cooling and heat transfer mechanisms,and proposes a localized cooling technology scheme based on water source heat pump technology.Utilizing theoretical calculations and simulation methodologies,the variations in the temperature field of the tunnel under different supply air temperature and volume conditions were simulated.This analysis facilitated the determination of optimal cooling parameters and cooling capacity.Additionally,the selection of equipment and the practical application of the cooling system were conducted.The findings indicate that a localized cooling scheme,which involves positioning the refrigeration unit at the working face,offers a simpler structure,and is more economical and practical.The optimal cooling temperature for long-distance excavation in the -750 m section is determined to be 10 ℃,with a supply air volume of 5.0 m3/s and a cooling capacity of 300.36 kW,serving as a reference for equipment selection.During the on-site application,the establishment of a water storage tank and the implementation of spray cooling measures effectively addressed the issues of insufficient water supply in the refrigeration system and significant cooling loss along the air supply route.Consequently,the temperature at the excavation working face decreased from 37.0 ℃ to 26.2 ℃,a reduction of 10.8 ℃.The average temperature reduction within a 50- meter radius of the working face and the transportation roadway was 8.9 ℃ and 2.9 ℃,respectively.This indicates a significant improvement in the high-temperature conditions of the excavation tunnel.The implementation of this localized cooling technology provides a valuable technical reference for addressing deep heat issues in similar mining environments.

Cite this article

Zhonglei GUO , Yu CUI , Chunlong WANG . Application of Local Refrigeration and Cooling Technology in Underground Long-distance Excavation Tunnel[J]. Gold Science and Technology, 2024 , 32(5) : 916 -925 . DOI: 10.11872/j.issn.1005-2518.2024.05.202

References

null Bian Menglong, Du Cuifeng, Miao Yujia,2018a.Distribution law of air flow temperature field in drivage roadway[J].Nonferrous Metal,70(3) :107-112.
null Cai Meifeng, Ji Duo, Chen Xiangsheng,et al,2021.Development strategy for Co-mining of the deep mineral and geothermal resources[J].Strateg Study of Chinese Academy of Engineerng,23(6):43-51.
null Cai Meifeng, Ma Minghui, Pan Jiliang,et al,2022.Co-mining of mineral and geothermal resources:A state-of-the-art review and future perspectives[J].Chinese Journal of Engineering,44(10):1669-1681.
null Cai Meifeng, Xue Dinglong, Ren Fenhua,2019.Current status and development strategy of metal mines[J].Chinese Journal of Engineering,41(4):417-426.
null Du Cuifeng, Xu Zhe, Tang Zhanxin,et al,2016.Numerical simulation of ventilation and cooling in excavation tunnel and analysis of influencing factors[J].Metal Mine,45(2):151-155.
null Guo Duiming, Li Guoqing, Hou Jie,et al,2022.Optimization of local ventilation parameters of deep mine excavation roadway based on FLUENT[J].Gold Science and Technology,30(5):753-763.
null Guo Pingye, Zhu Yanyan,2011.Back-Analysis algorithm of cooling load in deep mines[J].Journal of Mining and Safety Engineering,28(3):483-487.
null He Guojia, Ruan Guoqiang, Yang Zhuang,2011.Research and application on preventive measure against heat disaster in Zhaolou coal mine[J].Journal of China Coal Society,36(1):101-104.
null He M C,2009.Application of HEMS cooling technology in deep mine heat hazard control[J].International Journal of Mining Science and Technology,19(3):269-275.
null He M C, Cao X L, Xie Q,et al,2010.Principles and technology for stepwise utilization of resources for mitigating deep mine heat hazards[J].International Journal of Mining Science and Technology,20(1):20-27.
null He Manchao, Guo Pingye,2013.Deep rock mass thermodynamic effect and temperature control measures[J].Chinese Jou-rnal of Rock Mechanics and Engineering,32(12):2377-2393.
null He Manchao, Guo Pingye, Chen Xueqian,et al,2015a.Resea-rch on characteris of high-temperature and control of heat-harm of Sanhejian coal mine[J].Chinese Journal of Rock Mechanics and Engineering,29(Supp.1):2593-2597.
null He Manchao, Guo Pingye,2015b.Field experimental study on heat disaster control in Xuzhou mining area[J].Coal Engineering,47(4):1-4.
null He Manchao, Xu Min,2008.Research and development of HEMS cooling system and heat-harm control in deep mine[J].Chinese Journal of Rock Mechanics and Engineering,27(7):1353-1361.
null Ji Haiwei, Zhang Jin, Fan Hong,et al,2022.Development of mine cooling system with mine influx water cold-heat method[J].Journal of Xi’an University of Science and Technology,42(1) :83-90.
null Li Xiaojian, Jia Mintao, Zhao Xu,et al,2024.Numerical simulation study on ventilation and cooling of deep mine tunnels[J].Metal Mine,53(2):271-275.
null Li Zijun, Xu Yu, Jia Mintao,et al,2021.Numerical simulation on heat hazard control by collaborative geothermal exploitation in deep mine[J].Journal of Central South University(Science and Technology),52(3):671-680.
null Liu Jiangong,2011.Study and practice of low-carbon ecological mining construction of Jizhong energy group[J].Journal of China Coal Society,36(2):317-321.
null Meng Li,2010.Sink Technology of Horizontal Circulation and Operational Analysis of HEMS in Sanhejian Coal Mine[D].Beijing:China University of Mining and Technology(Beijing).
null Qiao Hua, Wang Jinggang, Zhang Ziping,2000.Study on the ice melting and feasibility of cooling system[J].Journal of China Coal Society,25(Supp.1):122-125.
null Qin Fan,2015.Study of Tunnel Thermal Environment and Cooling Load Analysis and Calculation[D].Beijing:China University of Mining and Technology(Beijing).
null Shen Weidao, Tong Jungeng,2016.Engineering Thermodynamics[M].Beijing:Higher Education Press.
null Sun Xikui, Li Xuehua, Cheng Weimin,2009.Study of cold kadia-tion cooling technology using ice water from mine[J].Jou-rnal of Mining and Safety Engineering,26(1):105-109.
null Wang Yunmin, Li Gang, Xu Yu,et al,2023.Research status and pro-spect of thermal environment regulation of the deep mine of China in the past 20 years[J].Metal Mine,52(3):1-13.
null Yang Shengbin,2008.Heat-harm Control Technique at Great Depths with Mine Water Discharge as Cold Source in Jiahe Coal Mine[D].Beijing:China University of Geosciences(Beijing).
null Yuan Liang,2007.Theoretical analysis and practical application of coal mine cooling in Huainan mining area[J].Journal of Mining and Safety Engineering,34(3):299-301.
null Zhang Hui, Jian Congguang, Zhang Bo,et al,2009.Economical performance of ice refrigeration and air conditioning system in high temperature mine[J].Journal of Xi’an University of Science and Technology,29(2):149-153.
null Zhang Yongliang, Liu Yaoxiang, Chen Xishan,2014.Utilization methods of geothermal resources in Jiaodong Peninsula mines[J].Metal Mine,42(5): 158-161.
null 边梦龙,杜翠凤,苗雨加,2018.掘进巷道风流温度场分布规律的研究[J].有色金属,70(3):107-112.
null 蔡美峰,多吉,陈湘生,等,2021.深部矿产和地热资源共采战略研究[J].中国工程科学,23(6):43-51.
null 蔡美峰,马明辉,潘继良,等,2022.矿产与地热资源共采模式研究现状及展望[J].工程科学学报,44(10):1669-1681.
null 蔡美峰,薛鼎龙,任奋华,2019.金属矿深部开采现状与发展战略[J].工程科学学报,41(4):417-426.
null 杜翠凤,徐喆,唐占信,等,2016.掘进巷道通风降温的数值模拟及影响因素分析[J].金属矿山,45(2):151-155.
null 郭对明,李国清,侯杰,等,2022.基于FLUENT的深井掘进巷道局部通风参数优化[J].黄金科学技术,30(5):753-763.
null 郭平业,朱艳艳,2011.深井降温冷负荷反分析计算方法[J].采矿与安全工程学报,28(3):483-487.
null 何国家,阮国强,杨壮,2011.赵楼煤矿高温热害防治研究与实践[J].煤炭学报,36(1):101-104.
null 何满潮,郭平业,2013.深部岩体热力学效应及温控对策[J].岩石力学与工程学报,32(12):2377-2393.
null 何满潮,郭平业,陈学谦,等,2015a.三河尖矿深井高温体特征及其热害控制方法[J].岩石力学与工程学报,29(增1):2593-2597.
null 何满潮,郭平业,2015b.徐州矿区深部开采热害治理现场试验研究[J].煤炭工程,47(4):1-4.
null 何满潮,徐敏,2008.HEMS深井降温系统研发及热害控制对策[J].岩石力学与工程学报,27(7):1353-1361.
null 纪海维,张进,范红,等,2022.矿井涌水冷热利用深井降温系统[J].西安科技大学学报,42(1):83-90.
null 李晓健,贾敏涛,赵旭,等,2024.高温深井矿山独头掘进巷道通风降温机理研究[J].金属矿山,53(2):271-275.
null 李孜军,徐宇,贾敏涛,等,2021.深部矿井岩层地热能协同开采治理热害数值模拟[J].中南大学学报(自然科学版),52(3):671-680.
null 刘建功,2011.冀中能源低碳生态矿山建设的研究与实践[J].煤炭学报,36(2):317-321.
null 孟丽,2010.三河尖矿水平循环冷源技术及其HEMS系统运行分析[D].北京:中国矿业大学(北京).
null 乔华,王景刚,张子平,2000.深井降温冰冷却系统融冰及技术经济分析研究[J].煤炭学报,25(增1):122-125.
null 秦帆,2015.高温掘进巷道热环境及降温冷负荷分析计算研究[D].北京:中国矿业大学(北京).
null 沈维道,童钧耕,2016.工程热力学[M].北京:高等教育出版社.
null 孙希奎,李学华,程为民,2009.矿井冰水冷辐射降温技术研究[J].采矿与安全工程学报,26(1):105-109.
null 王运敏,李刚,徐宇,等,2023.我国深部矿井热环境调控研究近20a进展及展望[J].金属矿山,52(3):1-13.
null 杨生彬,2008.矿井涌水为冷源的夹河矿深井热害控制技术[D].北京:中国地质大学(北京).
null 袁亮,2007.淮南矿区矿井降温研究与实践[J].采矿与安全工程学报,24(3):298-301.
null 张辉,菅从光,张博,等,2009.高温矿井冰制冷降温系统经济性[J].西安科技大学学报,29(2):149-153.
null 张永亮,刘耀香,陈喜山,2014.胶东半岛矿山地热资源利用方法[J].金属矿山,42(5):158-161.
Outlines

/