img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2019, 27(1): 105-111 doi: 10.11872/j.issn.1005-2518.2019.01.105

全尾砂沉降浓缩试验研究

陈鑫政1,2, 郭利杰,1,2,*, 李文臣1,2, 李宗楠1,2

1. 北京矿冶科技集团有限公司,北京 102628

2. 国家金属矿绿色开采国际联合研究中心,北京 102628

Experimental Study on Sedimentation and Concentration of Unclassified Tailings

CHEN Xinzheng1,2, GUO Lijie,1,2,*, LI Wenchen1,2, LI Zongnan1,2

1. BGRIMM Technology Group,Beijing 102628,China

2. National Center for International Joint Research on Green Metal Mining,Beijing 102628,China

收稿日期: 2018-03-26   修回日期: 2018-06-23   网络出版日期: 2019-03-11

基金资助: 国家自然科学基金项目“采场充填体的三维应力解析及其强度设计理论”(编号:51774040)、“十三五”国家重点研发计划“深部金属矿协同开采理论与技术”(编号:2016YFC0600709)和北京矿冶研究总院青年创新基金“碱激发铅锌冶炼渣制备充填胶凝材料研究”(编号:QC-201728)联合资助

Received: 2018-03-26   Revised: 2018-06-23   Online: 2019-03-11

作者简介 About authors

陈鑫政(1990-),男,河南商丘人,助理工程师,从事金属矿充填理论与技术方面的研究工作czgj403@163.com 。

郭利杰(1980-),男,河南南乐人,教授,从事矿山充填技术与矿冶固废资源化利用方面的研究工作ljguo264@126.com , E-mail:ljguo264@126.com

摘要

尾砂高效沉降浓缩是全尾砂高浓度充填的核心,随着选矿工艺的改进,尾砂的粒径越来越细小,导致尾砂沉降浓缩愈发困难,而在尾砂浆中加入絮凝剂能够极大地提高尾砂沉降浓缩的效率。针对国内某矿山尾砂颗粒细小、沉降浓缩困难的问题,通过开展沉降浓缩试验,以固体通量和底流浓度作为评价指标,得到沉降浓缩效率最佳的絮凝剂型号、给料浓度和絮凝剂添加量,并研究了给料浓度和絮凝剂添加量对尾砂沉降效率的影响规律。结果表明:最佳絮凝剂型号为HJ70010,最佳给料浓度范围为10%~12%,最佳絮凝剂添加量范围为10~15 g/t;当给料浓度为12%、絮凝剂添加量为15 g/t时,底流浓度达到64.4%,沉降速度为26.2 m/h,固体通量为3.43 t/(hm2);随着给料浓度的增加,固体通量呈现先增大后减小的抛物线状变化规律,底流浓度先增大后逐渐趋于稳定;随着絮凝剂添加量的增加,固体通量先增大后趋于稳定,底流浓度呈现先增大后减小的抛物线状变化规律。

关键词: 全尾砂 ; 沉降浓缩 ; 固体通量 ; 底流浓度 ; 给料浓度 ; 絮凝剂添加量

Abstract

Back filling method using unclassified tailings is an effective way to realize green mining of metal mines.Sedimentation and concentration of unclassified tailings is the key technology in the full tailings filling.With the improvement of mineral processing technology,the particle size of tailings gets smaller and smaller,which makes the sedimentation and concentration of tailings more difficult.Adding the flocculant to tailings slurry can greatly improve the sedimentation and concentration of tailings.The type of flocculant, the feeding concentration of tailings slurry and the dosage of flocculant added to tailings slurry are important factors that affect the flocculation and sedimentation efficiency of unclassified tailings,which are usually got from the sedimentation concentration test.Aiming at the problem of fine tailings being hard to concentrate in a domestic mine and using solid flux and bottom flow concentration as evaluation indicators,the sedimentation concentration test was carried out.Using the single factor analysis method,four experiments of the flocculant optimization,the optimal feeding concentration selection,the optimal flocculant unit consumption selection and the standard flocculation sedimentation were carried out in turn to get the parameters of flocculant type,feeding concentration and flocculant unit consumption with the best sedimentation and concentration effect.And the influence rules of feeding concentration and flocculant unit consumption on sedimentation and concentration of tailings was studied.The experiment process is simple and easy to operate,and the result is highly reliable.In the flocculant optimization experiment,four different types of anionic flocculant were chosen and they were domestic HJ63016、HJ70010、AL504 and French SNF6013S.In the optimal feeding concentration selection experiment,the concentration of tailings slurry is 6%,8%,10%,12%,14%,20%,25% and 30% respectively.In optimal flocculant unit consumption selection experiment,the flocculant unit consumption is 5,10,15,20,25,30 g/t.The results show that the optimum flocculant type is HJ70010,the optimum tailings slurry feeding concentration range is 10% ~ 12%,and the optimum flocculant dosage range is 10 ~ 15 g/t.When the tailings slurry feeding concentration is 12%,and the flocculant dosage is 15 g/t,the bottom flow concentration reached 64.4%,the sedimentation rate is 43.7 cm/min,and the solid flux is 3.43 t/(hm2).With the increasing of feeding concentration,the solid flux increased first and then decreased with a parabolic change,and the bottom flow concentration increased first and then gradually stabilized.With the increasing of flocculant unit consumption,the solid flux increased first and then gradually stabilized,and the bottom flow concentration increased first and then decreased with a parabolic change.

Keywords: unclassified tailings ; sedimentation and concentration ; solid flux ; bottom flow concentration ; feeding concentration ; flocculant unit consumption

PDF (1118KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈鑫政, 郭利杰, 李文臣, 李宗楠. 全尾砂沉降浓缩试验研究[J]. 黄金科学技术, 2019, 27(1): 105-111 doi:10.11872/j.issn.1005-2518.2019.01.105

CHEN Xinzheng, GUO Lijie, LI Wenchen, LI Zongnan. Experimental Study on Sedimentation and Concentration of Unclassified Tailings[J]. Gold Science and Technology, 2019, 27(1): 105-111 doi:10.11872/j.issn.1005-2518.2019.01.105

目前金属矿产资源开发带来的尾矿、废石等固体废料处置与地表沉陷是制约金属矿安全可持续发展的瓶颈问题。行业内普遍认为将尾矿制成浆体充填至井下采空区是解决上述两大问题的理想方案。该方案不仅能够有效控制地压,提高资源的回收率,而且能够减少尾矿废石的排放堆存,保护矿区周边环境,并且采用全尾砂充填能够实现矿山无废开采[1,2,3]。尾砂沉降浓缩是制备高浓度合格充填料浆的核心,随着选矿工艺的发展,尾砂的粒径变得越来越细,从而导致尾砂的沉降浓缩变得非常困难[4,5,6]

在尾砂浆中加入絮凝剂能够极大地提高尾砂的沉降速率,因而絮凝沉降技术在尾砂的沉降浓缩中得到了广泛应用,尾砂浆的浓度、絮凝剂的种类和添加量均影响着絮凝沉降效率[7,8,9,10,11]。我国学者主要对全尾砂絮凝沉降的规律和特性进行了研究[12,13,14,15,16],国外学者则从絮凝剂的作用机理和影响絮凝沉降的因素等方面开展了相关研究[17,18,19,20]。在前人工作的基础上,针对国内某矿山全尾砂颗粒细小、浓缩困难的问题,以固体通量和底流浓度作为衡量指标[21,22],通过开展沉降浓缩试验来研究尾砂浆的絮凝沉降规律,并选择适合该矿山的浓密机最佳给料浓度、絮凝剂种类和添加量。

1 沉降试验

1.1 试验材料

(1)絮凝剂。试验选用的絮凝剂为聚丙烯酰胺(PAM)阴离子型有机高分子絮凝剂,型号分别为HJ63016、AL504、SNF6013S和HJ70010。

(2)全尾砂。试验全尾砂取自国内某多金属矿山,尾砂密度为3.19 g/cm3,堆积密度为1.39 g/cm3,孔隙率为56.5%。尾砂的平均粒径为37.592 μm,-200目以下颗粒占65.26%,400目以下颗粒占49.81%,属于极细粒尾砂,全尾砂基本物理参数和粒径分布分别如表1和图1所示。

表1   全尾砂基本物理参数

Table 1  Basic physical parameters of unclassified tailings

参数数值参数数值
密度/(g·cm-33.19曲率系数Cc1.13
堆积密度/(g·cm-31.39-200目/%65.26
孔隙率/%56.5-400目/%49.81
不均匀系数Cu21.17

新窗口打开| 下载CSV


图1

图1   全尾砂粒径分布曲线

Fig.1   Particle size distribution curves of unclassified tailings


1.2 试验原理

根据斯托克斯定律,固体颗粒在液体中的沉降速率与其粒径的平方成正比,与液体黏度成反比,可表示为

v=g18η(ρs-ρl)d2

式中:v为固体颗粒自由沉降速度(m/s);g为重力加速度,取9.8 m/s2η为液体黏度(Pa·s);ρs为固体颗粒密度(kg/m3);ρl为液体密度(kg/m3);d为固体颗粒直径(m)。

絮凝剂作用原理是通过中和颗粒表面电荷,降低或消除颗粒之间的排斥力,形成高分子链网并捕获细颗粒,使颗粒体积不断增大,沉降速度加快,加速了浓密过程。

1.3 试验方案

试验采用单因素分析方法,不考虑给料浓度与絮凝剂添加量之间的交互作用,主要包括4个部分。分述如下:

(1)絮凝剂优选。根据全尾砂性质和工程类比,初步选择4种絮凝剂品牌型号:HJ63016(北京恒聚,中国)、HJ70010(北京恒聚,中国)、AL504(北京希涛,中国)和SNF6013S(爱森,法国),开展尾砂浆静态絮凝沉降试验,从中选择一种最优的絮凝剂型号。其中,尾砂浆质量浓度为10%,絮凝剂溶液浓度为0.5%,絮凝剂添加量为20 g/t。

(2)最佳给料浓度选择。当确定最优絮凝剂型号后,配置质量浓度为6%、8%、10%、12%、14%、20%、25%和30%的尾砂浆,开展静态絮凝沉降试验,其中,絮凝剂溶液浓度为0.5%,絮凝剂添加量为20 g/t。

(3)最佳絮凝剂添加量选择。当确定最佳给料浓度后,配置该质量浓度的尾砂浆6组,开展静态絮凝沉降试验,其中,絮凝剂溶液浓度为0.5%,絮凝剂添加量分别为5,10,15,20,30 g/t。

(4)标准动态絮凝沉降试验。根据上述试验结果,开展标准动态絮凝沉降试验,验证所选择的给料浓度和絮凝剂添加量能否满足矿山要求。

试验采用固体通量和底流浓度作为絮凝剂优选、最佳给料浓度和最佳絮凝剂添加量的衡量指标。固体通量是指单位面积、单位时间内通过的固体质量,可表示为

Fs=ρvCw

式中:Fs为固体通量(t·h-1·m-2);ρ为尾砂浆密度(g/cm3);v为固体颗粒沉降速度(m/s);Cw为尾砂浆的质量浓度(%)。

底流浓度是指沉降24 h去除上部澄清水之后的砂浆浓度,计算公式为

Cw=m1m2

式中:Cw为底流的质量浓度(%);m1为尾砂质量(g);m2为底流质量(g)。

2 试验结果与分析

2.1 絮凝剂优选

根据试验方案,配置1 800 mL的尾砂浆,采用2 000 mL的量筒开展静态絮凝沉降试验,结果如表2、图2和图3所示。

表2   絮凝剂优选试验结果

Table 2  Results of flocculant preferred experiment

絮凝剂

型号

质量浓度/%添加量/(g·t-1底流浓度/%沉降速率/(m·h-1固体通量/(t·h-1·m-2
HJ6301610205930.383.26
AL50410205729.843.20
SNF6013S10205729.813.17
HJ7001010205830.493.27

新窗口打开| 下载CSV


图2

图2   固液分离界面高度随时间的变化曲线(不同絮凝剂)

Fig.2   Change curves of height of solid-liquid separation interface with time(different flocculants)


图3

图3   各絮凝剂型号试验组的固体通量与底流浓度

Fig.3   Bottom flow concentration and solid flux of each experiment with different flocculant type


由表2、图2和图3可知,4种絮凝剂型号试验组的固体通量和底流浓度均较高,其中HJ63016和HJ70010试验组的固体通量和底流浓度均高于AL504和SNF6013S试验组,HJ63016型絮凝剂的价格为2.5万元/吨,HJ70010型絮凝剂的价格为2万元/吨,综合考虑技术要求和经济成本,选择HJ70010絮凝剂作为最佳絮凝剂开展后续试验。

2.2 最佳给料浓度选择

根据国内矿山尾砂浓缩工艺参数,浓密机给料浓度一般低于30%[23],在实验室配置质量浓度为6%、8%、10%、12%、14%、20%、25%和30%的尾砂浆,开展静态絮凝沉降试验,其中絮凝剂型号为HJ70010,絮凝剂溶液浓度为0.5%,絮凝剂添加量为20 g/t。试验结果如表3、图4和图5所示。

表3   最佳给料浓度选择试验结果

Table 3  Results of optimal feeding concentration selection experiment

给料浓度/%絮凝剂添加量/(g·t-1底流浓度/%沉降速率/(m·h-1固体通量/(t·h-1·m-2
6205434.02.07
8205729.42.49
10205727.62.93
12206020.22.61
14206317.32.68
2020637.71.77
2520634.91.45
3020642.50.91

新窗口打开| 下载CSV


图4

图4   固液分离界面高度随时间的变化曲线(不同给料浓度)

Fig.4   Change curves of height of solid-liquid separation interface with time(different feeding concentrations)


图5

图5   各给料浓度试验组的固体通量与底流浓度

Fig.5   Bottom flow concentration and solid flux of each experiment with different feeding concentration


由表3和图4可知,固液分离界面高度随时间的变化曲线分布在3个区域,其中给料浓度为30%时分布在最上部区域,沉降速率最小为2.5 m/h;给料浓度为20%和25%时分布在中部区域,沉降速率分别为7.7 m/h和4.9 m/h;给料浓度为6%~14%时分布在最下部区域,沉降速率大,分布范围为17.3~34.0 m/h。沉降速度越快,固液分离界面高度随时间的变化曲线的曲率越大,在5 min左右趋于水平。由表3和图5可知,固体通量随给料浓度的增加呈现先增大后减小的抛物线状变化规律,其中给料浓度为10%时达到最大固体通量;底流浓度随给料浓度的增大而增大,当给料浓度增加至14%后,底流浓度趋于稳定。综合考虑固体通量和底流浓度,选择10%~12%作为最佳给料浓度范围。

2.3 最佳絮凝剂添加量选择

配置质量浓度为10%的尾砂浆6组,开展静态絮凝沉降试验,絮凝剂溶液浓度为0.5%,絮凝剂添加量分别为5,10,15,20,25,30 g/t,试验结果如表4、图6和图7所示。

表4   最佳絮凝剂添加量选择试验结果

Table 4  Results of optimal flocculant dosage selection experiment

编号絮凝剂添加量/(g·t-1料浆密度/%底流浓度/%沉降速率/(m·h-1固体通量/(t·h-1·m-2
15106423.542.53
210106624.982.62
315106229.413.12
420106130.963.31
525106230.743.26
630106132.003.40

新窗口打开| 下载CSV


图6

图6   固液分离界面高度随时间的变化曲线(不同絮凝剂添加量)

Fig.6   Change curves of height of solid-liquid separation interface with time(different flocculant dosages)


图7

图7   各絮凝剂添加量试验组的固体通量和底流浓度

Fig.7   Bottom flow concentration and solid flux of each experiment with different flocculant dosage


由表4和图6可知,沉降速率随絮凝剂添加量的增加而增大,固液分离界面高度随时间的变化曲线的曲率越大,在2 min左右趋于水平。由表4和图7可知,固体通量随絮凝剂添加量的增加而增大,当添加量达到15 g/t时,固体通量趋于稳定;底流浓度随絮凝剂添加量的增加呈现先增大后减小的抛物线状变化规律,当絮凝剂添加量为10 g/t时,底流浓度最大。固体通量为2.5~3.0 t·h-1·m-2时较合理,过高易导致浓密机压耙。综合考虑固体通量和底流浓度,选择最佳絮凝剂添加量范围为10~15 g/t。

2.4 标准动态絮凝沉降试验

根据前三部分试验结果,开展4组标准动态絮凝沉降试验(质量浓度分别为10%和12%,絮凝剂添加量分别为10 g/t和15 g/t),试验采用带耙沉降装置。试验结果如表5、图8和图9所示。

表 5   标准动态絮凝沉降试验结果

Table 5  Results of standard dynamic flocculation settlement test

编号絮凝剂添加量/(g·t-1料浆密度/%底流浓度/%沉降速率/(m·h-1固体通量/(t·h-1·m-2
1#101064.1021.612.32
2#151063.8027.332.93
3#101265.5021.572.82
4#151264.4026.193.43

新窗口打开| 下载CSV


由表5、图8和图9可知,4组试验的沉降速率均较大,固体通量和底流浓度分别达到3 t·h-1·m-2和64%左右,能够满足矿山充填工艺要求。

图8

图8   各试验组的固液分离界面高度随时间的变化曲线

Fig.8   Change curves of height of solid-liquid separation interface with time of different tests


图9

图9   1#至4#试验组的固体通量和底流浓度

Fig.9   Bottom flow concentration and solid flux of test 1# to 4#


3 结论

(1)对于某矿山全尾砂,阴离子聚丙烯酰胺絮凝沉降效率较佳,适合矿山尾砂浆沉降浓缩的最佳絮凝剂为HJ70010型絮凝剂。

(2)浓密机最佳给料浓度范围为10%~12%,最佳絮凝剂添加量范围为10~15g/t,固体通量和底流浓度分别达到3 t·h-1·m-2和64%。

(3)固体通量随给料浓度的增加呈现先增大后减小的抛物线状变化规律,随絮凝剂添加量的增加先增大后趋于稳定;底流浓度随给料浓度的增加先增大后趋于稳定,随絮凝剂添加量的增加呈现先增大后减小的抛物线状变化规律。

参考文献

杨小聪郭利杰.

尾矿和废石综合利用技术

[M].北京化学工业出版社2018.

[本文引用: 1]

YangXiaocong, GuoLijie.

Tailings and Waste Rock Comprehensive Utilization Technology

[M].BeijingChemical Industry Press2018.

[本文引用: 1]

吴爱祥王洪江.

金属矿膏体充填理论与技术

[M].北京科学出版社2015.

[本文引用: 1]

WuAixiangWangHongjiang.

Theory and Technology of Paste Filling in Metal Mine

[M].BeijingScience Press2015.

[本文引用: 1]

于润沧.

我国胶结充填工艺发展的技术创新

[J].中国矿山工程,2010395):1-3.

[本文引用: 1]

YuRuncang.

Development and innovation of cemented filling technology in China

[J].China Mine Engineering2010395):1-3.

[本文引用: 1]

张钦礼周登辉王新民.

超细全尾砂絮凝沉降实验研究

[J].广西大学学报(自然科学版),2013382):451-455.

[本文引用: 1]

ZhangQinliZhouDenghuiWangXinminet al.

Experimental study on flocculating sedimentation of ultra-fine unclassified tailings

[J].Journal of Guangxi University(Natural Science Edition)2013382):451-455.

[本文引用: 1]

李立涛杨志强王忠红.

鞍钢矿山超细铁矿全尾砂浆絮凝沉降特性试验

[J].矿业研究与开发,2017373):19-23.

[本文引用: 1]

LiLitaoYangZhiqiangWangZhonghonget al.

Experimental study on the flocculation and settling characteristics of the slurry with extra-fine iron total tailings in Angang Mine

[J].Mining Research and Development2017373):19-23.

[本文引用: 1]

甘德清韩亮刘志义.

细粒级尾砂絮凝沉降特性研究

[J].矿业研究与开发,2017379):31-35.

[本文引用: 1]

GanDeqingHanLiangLiuZhiyiet al.

Study on the flocculation settlement characteristics of fine-grained tailings

[J].Mining Research and Development2017379):31-35.

[本文引用: 1]

刘志强程海勇王贻明.

絮凝剂对全尾砂沉降性能影响试验研究

[J].中国矿山工程,2015441):41-44.

[本文引用: 1]

LiuZhiqiangChenHaiyongWangYiminget al.

Experimental research of flocculant influence on settlement characteristic of unclassified tailings

[J].China Mine Engineering2015441):41-44.

[本文引用: 1]

吴爱祥周靓尹升华.

全尾砂絮凝沉降的影响因素

[J].中国有色金属学报,2016262):439-446.

[本文引用: 1]

WuAixiangZhouJingYinShenghuaet al.

Influence factors on flocculation sedimentation of unclassified tailings

[J].The Chinese Journal of Nonferrous Metals2016262):439-446.

[本文引用: 1]

周靓吴爱祥彭乃兵.

基于响应曲面法优化全尾砂絮凝沉降实验研究

[J].矿业研究与开发,2016367):26-30.

[本文引用: 1]

ZhouJingWuAixiangPengNaibinget al.

Experimental study on flocculation settlement of unclassified tailings based on response surface methodology

[J].Mining Research and Development2016367):26-30.

[本文引用: 1]

焦华喆王洪江吴爱祥.

全尾砂絮凝沉降规律及其机理

[J].北京科技大学学报,2010326):702-707.

[本文引用: 1]

JiaoHuazheWangHongjiangWuAixianget al.

Rule and mechanism of flocculation sedimentation of unclassified tailings

[J].Journal of University of Science and Technology Beijing2010326):702-707.

[本文引用: 1]

杨超郭利杰许文远.

充填尾砂絮凝沉降规律试验研究

[J].黄金,2014356):39-42.

[本文引用: 1]

YangChaoGuoLijieXuWenyuanet al.

Experimental study on the rule of flocculation sedimentation of filling tailings

[J].Gold2014356):39-42.

[本文引用: 1]

王新民赵建文.

全尾砂浆最佳絮凝沉降参数

[J].中南大学学报(自然科学版),2016475):1675-1681.

[本文引用: 1]

WangXinminZhaoJianwen.

Optimal flocculating sedimentation parameters of unclassified tailings slurry

[J].Journal of Central South University (Science and Technology)2016475):1675-1681.

[本文引用: 1]

李欣郭利杰杨超.

安徽某金矿山全尾砂絮凝沉降试验研究

[J].中国矿业,201726(增1):326-329.

[本文引用: 1]

LiXinGuoLijieYangChao.

Experimental study on the flocculating settling of unclassified tailings for a gold mine in Anhui Province

[J].China Mining Magazine2017

26(Supp

.1):326-329.

[本文引用: 1]

张钦礼刘奇赵建文.

全尾砂絮凝沉降参数预测模型研究

[J].东北大学学报(自然科学版),2016376):875-879.

[本文引用: 1]

ZhangQinliLiuQiZhaoJianwen.

Study on the parameters prediction model of flocculating sedimentation of crude tailings

[J].Journal of Northeastern University( Natural Science)2016376):875-879.

[本文引用: 1]

刘凯黄德镛张明旭.

大红山铜矿全尾砂絮凝沉降的试验研究

[J].中国矿业,20081712):60-63.

[本文引用: 1]

LiuKaiHuangDeyongZhangMingxuet al.

Experimental study on all tailings flocculation settling in Dahongshan copper mine

[J].China Mining Magazine20081712):60-63.

[本文引用: 1]

柯愈贤王新民张钦礼.

全尾砂料浆磁化絮凝沉降特性

[J].中国有色金属学报,2017272):392-398.

[本文引用: 1]

KeYuxianWangXinminZhangQinli.

Flocculating sedimentation characteristic of pre-magnetized crude tailings slurry

[J].The Chinese Journal of Nonferrous Metals2017272):392-398.

[本文引用: 1]

RulyovN NLaskowskiJ SConchaF.

The use of ultra-flocculation in optimization of the experimental flocculation procedures

[J].Physicochemical Problems of Mineral Processing2011475-16.

[本文引用: 1]

EswaraiahCBiswalS KMishraB K.

Settling characteristics of ultrafine iron ore slimes

[J].International Journal of Minerals Metallurgy and Materials2012192):95-99.

[本文引用: 1]

Addai-MensahJ.

Enhanced flocculation and dewatering of clay mineral dispersions

[J].Powder Technology20071791/2):73-78.

[本文引用: 1]

DashMDwariR KBiswalS Ket al.

Studies on the effect of flocculant adsorption on the dewatering of iron ore tailings

[J].Chemical Engineering Journal20111732):318-325.

[本文引用: 1]

JainVTammishettiVJoshiKet al.

Guar gum as a selective flocculant for the beneficiation of alumina rich iron ore slimes:Density functional theory and experimental studies

[J].Minerals Engineering2017109144-152.

[本文引用: 1]

赵鑫郭亚兵.

浓缩机设计理论分析及应用

[J].太原科技大学学报,2013341):37-41.

[本文引用: 1]

ZhaoXinGuoYabing.

Theoretical analysis and application of thickener design

[J].Journal of Taiyuan University of Science and Technology2013341):37-41.

[本文引用: 1]

郭亚兵胡钰贤王守信.

沉降—浓缩理论及数学模型

[M].北京化学工业出版社2014.

[本文引用: 1]

GuoYabingHuYuxianWangShouxin.

Settlement-Concentration Theory and Mathematical Model

[M].BeijingChemical Industry Press2014.

[本文引用: 1]

/