img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2019, 27(3): 378-384 doi: 10.11872/j.issn.1005-2518.2019.03.378

采选技术与矿山管理

砂卵石土的剪切流变特性研究

陈沅江,, 史志华,

中南大学资源与安全工程学院,湖南 长沙 410083

Shear Rheological Properties of Sandy Pebble Soil

CHEN Yuanjiang,, SHI Zhihua,

School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

通讯作者: 史志华(1992-),男,河南永城人,硕士研究生,从事岩土与环境安全工程方面的研究工作。shizhihua1105@163.com

收稿日期: 2018-06-13   修回日期: 2018-11-07   网络出版日期: 2019-07-08

基金资助: 国家自然科学基金项目“基于深海稀软底质流变分析的履带式集矿机行走特性及结构优化” .  51274251

Received: 2018-06-13   Revised: 2018-11-07   Online: 2019-07-08

作者简介 About authors

陈沅江(1970-),男,湖南湘潭人,博士,副教授,从事岩土与环境安全工程方面的研究工作syjsafety@126.com , E-mail:syjsafety@126.com

摘要

应用RYL-600岩石剪切流变仪对长沙市某边坡砂卵石土试样进行剪切流变试验,分析砂卵石土的剪切流变特性。试验表明正应力越高时,能够引起砂卵石土试件发生剪切流变破坏的剪切应力也随之增高。砂卵石土剪切流变在低于长期抗剪切强度的应力作用下,表现出黏弹特性;在高于长期强度的应力作用下,表现出黏弹塑性。应用五元黏弹性模型与VR黏塑性模型串联得到的黏弹塑性模型对砂卵石土全程流变曲线进行模拟,将拟合结果与试验数据进行分析比较,验证了新模型具有正确性和合理性,这对砂卵石土工程具有重要的指导意义和参考价值。

关键词: 砂卵石土 ; 长期强度 ; 黏弹塑性 ; 剪切流变模型

Abstract

Sandy pebble soil has been widely used in engineering applications,such as railway subgrade,high earth-rock dams,bridge piers due to its excellent compaction performance and strong water permeability.At present,the research on the mechanical properties of sandy pebble soil at home and abroad mainly focuses on: (1)The dynamic deformation strength characteristics under complex stress state; (2)The effects of different density and water content on the mechanical parameters; (3)The simulation software to reflect the mechanical failure phenomenon of sandy pebble soil and calculate the mechanical parameters.The instability of rock mass is mainly caused by the slippage of rock mass along the failure surface under shear stress,but there was no research on shear rheological properties of sandy pebble soil at home and abroad.Shear rheological tests on sandy pebble soil under different normal stresses was carried out,and mechanical analysis and shear rheological model research were conducted based on experimental data to provide scientific analysis for the stability of sandy pebble soil engineering,thus ensuring long-term safety of sandy pebble soil engineering operations.The specific process of the test was to carry out the shear rheological test of the sandy pebble soil by the stepwise incremental loading method the normal stress of 0.025 MPa and 0.0375 MPa were applied to the two sets of samples,when the stability was stable for more than 24 h.Then the shear stress was applied from the low to the high grading time.When the displacement of the rheology within 24 h was not more than 0.001 mm,the deformation was considered to be relatively stable,and the next-stage shear stress can be applied. Did this until the test piece breaks. The RYL-600 rock shear rheometer recorded the rheological data for the entire process. Some classical viscoelastic models were used to simulate and compare the rheological curves before the accelerated rheology under 0.025 MPa normal stress and 0.203 MPa shear stress. It was known that the five-element viscoelastic model has an accurate simulation on stage before accelerated rheological transformation of sandy pebble soil. Because the accelerated rheological phase highlights the plastic properties of the rock,a new model obtained by connecting the five-element viscoelastic model and the VR viscoplastic model in series was used to fit the accelerated rheological results of the sandy pebble soil. Based on experimental data and analytical simulations,the following conclusions can be drawn: (1)Under the action of low shear stress,sandy pebble soil undergone instantaneous elastic deformation,initial rheological phase with decreasing speed,and constant steady rheological phase.When the shear stress of the sandy pebble soil exceeded its long-term strength,the rheology will continue to develop into an accelerated rheological failure stage. The magnitude of long-term shear strength increased with increasing normal stress.The reason was that the greater the normal stress,the higher the frictional force on the failure surface. (2)Through simulation comparison and analysis,it was found that the viscoelastic-plastic model obtained by connecting the five-element viscoelastic model and the VR viscoplastic model in series had a good fitting effect on the whole process rheological curve of sandy pebble soil.And the instantaneous elastic modulus tended to decrease linearly with the increase of shear stress. Although the viscoelastic shear modulus fluctuated,it was stable within the range of 1~5 MPa/mm. (3)The discrete nature of the particles and the randomness of the geometric distribution of the pebble also had a certain influence on the mechanical properties of the sandy pebble soil. In the future research,new numerical processing methods and simulation software should be adopted to characterize these important parameters,and analyze the specific effects of these parameters on the mechanical properties of sandy pebble soil.

Keywords: sandy pebble soil ; long-term strength ; viscoelastic-plasticity ; shear rheological model

PDF (717KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈沅江, 史志华. 砂卵石土的剪切流变特性研究[J]. 黄金科学技术, 2019, 27(3): 378-384 doi:10.11872/j.issn.1005-2518.2019.03.378

CHEN Yuanjiang, SHI Zhihua. Shear Rheological Properties of Sandy Pebble Soil[J]. Gold Science and Technology, 2019, 27(3): 378-384 doi:10.11872/j.issn.1005-2518.2019.03.378

砂卵石土属于粗粒土的一种,广泛分布在自然界中,因其具有优良的压实性能和较强的透水性,在工程中的应用范围日益广泛,如铁路路基、高土石坝和桥梁礅台等[1]。目前针对砂卵石土力学特性的研究主要集中在以下3个方面:一是复杂应力状态下的动力变形强度特性[2,3];二是不同密度和含水率对砂卵石土力学参数的影响[4];三是模拟软件对砂卵石土力学破坏现象的反映和力学参数的计算[5,6]。岩体失稳破坏主要是岩体在剪切应力作用下沿着破坏面产生滑移造成的[7,8,9,10,11],目前国内外缺乏针对砂卵石土剪切流变特性的研究,本研究以长沙市某边坡砂卵石土试样为研究对象,通过对砂卵石土试样进行室内剪切流变试验,研究能够准确描述砂卵石土全程流变的本构模型,为砂卵石土工程的稳定性提供可靠的数值和理论分析[12,13,14,15,16,17],对保证工程的顺利推进及长期稳定运行有着十分重要的意义。

1 剪切流变试验

1.1 试验概况

(1)试验仪器:RYL-600微机控制式岩石剪切流变仪;20 cm×20 cm×20 cm规格的剪切盒。

(2)砂卵石土试样的制作:砂卵石土样本采自长沙市某边坡,试验土样根据砂卵石土的实际级配,按相似级配法进行配制[18],试验土样的级配如表1所示。

表1   试验土样的级配

Table 1  Gradation of test soil samples

材料名称粒径范围/mm质量分数/%
黏土<0.07510.42
卵石15~4036.46
5~1515.62
2~510.42
1~26.25
0.45~18.06
0.3~0.455.21
0.2~0.34.36
0.075~0.23.20

新窗口打开| 下载CSV


1.2 试验步骤

采取分级增量加载方式对砂卵石土进行剪切流变试验。试验时先对2组试样各施加0.025 MPa和0.0375 MPa的法向应力,稳定在24 h以上。然后由低到高分级分时段施加剪应力,当24 h内流变的位移量小于等于0.001 mm时,认为变形相对稳定,可施加下一级剪切应力。如此进行下去,直至试件发生破坏。

2 试验结果与分析

根据试验数据,绘制出正应力分别为0.025 MPa和0.0375 MPa条件下的砂卵石土剪切流变位移—时间曲线,如图1所示。

图1

图1   不同正应力下的流变曲线

Fig.1   Rheological curves under different normal stresses


图1可以看出,在施加各级剪应力的瞬间,试样产生位移突变,而后变形速度逐渐减小,稳定在一个较低的速度,变形在此速度下匀速进行。但在高应力作用下,流变还会继续发展成为加速变形阶段,引起试样的破坏。在正应力为0.025 MPa条件下,当剪切应力为0.203 MPa时,砂卵石土开始出现加速变形破坏;而在正应力为0.0375 MPa条件下,当剪应力达到0.232 MPa时开始出现加速变形破坏,表明能够引起砂卵石土加速流变破坏的剪切应力的大小会随着正应力的增加而增加。

3 黏弹性流变模型及模型参数辨识

选择合适的剪切流变本构模型能够准确地反映砂卵石土各类流变特性,从而分析岩土工程的应力、应变及时间等因素的相互关系,科学地预测砂卵石土工程的稳定性。

以0.025 MPa正应力作用下的砂卵石土剪切流变曲线为例进行分析,当分级加载的剪切应力为0.203 MPa时,砂卵石土试样开始出现加速流变阶段,此时所对应的流变曲线即为流变全程曲线,如图2所示。

图2

图2   0.203 MPa剪切应力下的流变全程曲线

Fig.2   Whole process rheological curves under 0.203 MPa shear stress


图2可知,当剪切应力刚开始作用于砂卵石土时,试样发生瞬时弹性变形,流变表现出弹性特性,此阶段为瞬时弹性变形阶段。0-t1阶段,为砂卵石土的初始流变阶段,此阶段剪切流变速率以减速发展。t1-t2阶段,为稳态流变阶段,变形速度大体保持不变。在0-t2阶段,岩石剪切流变位移随着时间的增加而增加,表现出流变具有黏性特征。t2-t3阶段为加速流变阶段,变形速度出现突增,突出表现塑性特征,试样在此阶段发生破坏。总结可知,在瞬时弹性变形阶段、初始流变阶段和稳态流变阶段,流变表现出黏弹性特征;而在加速流变阶段,流变表现出黏弹塑性特征。

岩体长期强度定义为强度随时间持续降低,并逐渐趋近于一个稳定收敛的低限定值[19],是岩石稳态流变与加速流变的阈值[20]。综上,当剪切应力没有超过长期强度或超过了长期强度但流变还处在加速流变之前的阶段时,砂卵石土流变只体现出黏弹特性,采用若干经典的黏弹性模型[21,22,23,24]对0.025 MPa正应力、0.203 MPa剪切应力作用下加速流变前的流变曲线进行模拟和对比,拟合结果如表2所示。

表2   3种黏弹性流变模型拟合结果比较

Table 2  Comparison of fitting results with three viscoelastic rheological models

模型类别流变方程各级剪应力下的R2
0.087 MPa0.116 MPa0.145 MPa0.174 MPa0.203 MPa
五元件模型u(t)=1G1+1G21-e-G2tη1+1G31-e-G3tη2τ00.99930.99920.99810.99970.9997
H-K模型u(t)=1G1+1G21-e-G2tη1τ00.91890.97610.97140.98540.9540
Burgers模型u(t)=1G1+1G21-e-G2tη1τ0+τ0η2t0.93820.92070.97170.98780.9977

新窗口打开| 下载CSV


表2的拟合结果进行分析比较,可知五元件模型对黏弹性质的流变具有更好的拟合效果,所以本研究采用五元件模型对加速流变前的过程进行模拟,五元件模型结构如图3所示,模型的表达式为

u(t)=1G1+1G21-e-G2tη1+1G31-e-G3tη2τ0

图3

图3   五元件黏弹性剪切流变模型

Fig. 3   Five-component viscoelastic shear rheological model


式中:ut)为砂卵石土总的剪切位移;G1为瞬时剪切模量;G2G3均为黏弹性剪切模量;η1η2均为黏滞系数,表示流变阶段趋向稳定的快慢程度,数值越小,则趋向稳定的时间就越短;t为砂卵石土在该剪切应力作用下的流变时间;τ0为剪应力。

表3给出了使用五元黏弹性模型模拟流变曲线得出的各参数,分析可知瞬时剪切模量G1随剪应力的增加呈下降趋势。黏弹性剪切模量G2G3随剪应力的增加没有表现出明显的线性关系,但都稳定在1~5 MPa/mm之间。而黏滞系数η1η2在每级剪应力的作用下,变化幅度都很大,显示其具有时效性。

表3   五元黏弹性模型的拟合结果

Table 3  Fitting results of five element viscoelastic model

正应力/MPa剪应力/MPaG1/(MPa·mm-1G2/(MPa·mm-1G3/(MPa·mm-1η1/(MPa·h·mm-1η2/(MPa·h·mm-1R2
0.0250.0873.483.39712.50940.038515.37350.9993
0.1160.92064.93831.01433.6196×10-54.57130.9992
0.1450.35191.31842.26815.46780.06460.9981
0.1740.14941.66991.23775.91450.01140.9997
0.2030.06161.51841.07825.88120.84190.9997

新窗口打开| 下载CSV


4 黏弹塑性剪切流变模型

4.1 黏弹塑性模型的建立

砂卵石土试样在最后一级剪应力作用下,当流变发展为加速流变阶段时,开始出现的塑性特性对流变的影响至关重要。本文使用VR黏塑性模型与五元黏弹性模型进行串联组成的新模型对0.025MPa正应力、0.203MPa剪切应力作用下的加速流变阶段进行模拟分析。

VR(Visio-Plastic Rheological)黏塑性模型由非线性黏性元件和塑性元件并联组成[25],模型的表达式为

u(t)=τ0-τsη3exp(tn)-1

式中:τ0为剪应力;τs为砂卵石土试样长期抗剪强度;η3n均为岩土试样流变模型参数;t为流变时间。

将VR模型与第3节提到的五元件模型进行串联,组成一个同时具有黏、弹、塑性的新模型,结构如图4所示。

图4

图4   砂卵石土黏弹塑性剪切流变模型

Fig.4   Viscoelastic plastic shear rheological model of sandy pebble soil


串联得到的模型流变方程分3种情况进行讨论:

(1)当剪应力小于长期强度时,砂卵石土一直处于黏弹性流变,串联模型退化成五元非线性黏弹模型,相应的流变方程如式(1)所示。

(2)当剪应力大于长期强度但流变没有发展到加速流变阶段时,串联模型中的VR模型依然没有被响应,流变方程依然如式(1)所示。

(3)当剪应力大于长期强度且流变进行到了加速流变阶段时,串联模型中各元件都发挥作用,流变方程为

u(t)=1G1+1G21-e-G2tη1+1G31-e-G3tη2τ0  +τ0-τsη3exp(tn)-1

4.2 黏弹塑性模型参数的确定

求加速流变阶段模型的参数步骤如下:

(1)使用等时曲线法[26]求出0.025 MPa正应力作用下砂卵石土的长期抗剪切强度。

(2)在ORIGIN软件中,使用五元黏弹性模型对0.025 MPa正应力、0.203 MPa剪应力作用下的砂卵石土瞬时弹性、初始流变和稳态流变阶段进行函数拟合,可得到G1G2G3η1η2等参数,从而求出五元模型的具体函数。

(3)将加速流变阶段对应的时间代入五元模型函数中,得到加速流变阶段内关于黏弹性位移的理论值。用试验中实际的剪切位移减去该理论解,得出的结果即为黏塑性剪位移,用VR黏塑性模型进行拟合,即可得到各个未知参数。

按照上述步骤对0.025 MPa正应力、0.203 MPa剪应力作用下的全程流变曲线进行数据处理,可得到五元黏弹性模型串联VR黏塑性模型得到的新的模型中各参数取值依次为G1=0.0616 MPa/mm,G2=1.5184 MPa/mm,G3=1.078 MPa/mm,η1=25.881,η2=0.8419,η3=8837.9375,n=0.6903。应用得到的函数式对全程流变曲线进行模拟,拟合结果R2=0.9978,可知用五元件模型串联VR黏塑性模型构成的新模型能够很好地表达砂卵石土的全程流变曲线,这为以后进行砂卵石土材料的力学特性分析提供了理论基础。图5为使用此种黏弹塑性流变模型对各种情况下流变的拟合结果。

图5

图5   砂卵石土流变数据拟合结果

Fig.5   Fitting results of sandy pebble soil rheological data


5 结论

(1)砂卵石土在低剪应力作用下,依次经历瞬时弹性变形、速度逐渐减小的初始流变阶段和速度大体维持恒定的稳定流变阶段。当砂卵石土的剪应力超过其长期强度时,流变会继续发展成为加速流变破坏阶段。长期抗剪切强度的大小随正应力的增加而增加,其原因是正应力越大,破坏面所受的摩擦力也会随之上升。

(2)通过模拟对比和分析,得知五元黏弹性模型串联VR黏塑性模型得到的黏弹塑性模型对砂卵石土全程流变曲线有着很好的拟合效果。且瞬时弹性模量会随着剪切应力的增加而呈线性减小的趋势,黏弹性剪切模量虽有波动,但都稳定在1~5 MPa/mm之间。

(3)颗粒离散型和卵石几何分布的随机性对砂卵石土的力学特性也有一定的影响,今后研究中应采取新的数值处理方法和模拟软件来表征这些重要参数,分析这些参数对砂卵石土力学性能的具体影响。

参考文献

郭庆国 .

粗粒土的工程特性及应用

[M]. 郑州黄河水利出版社1998.

[本文引用: 1]

Guo Qingguo .

Research and Application of the Engineering Properties of Coarse-Grained Soil

[M].ZhengzhouYellow River Water Conservancy Press1998.

[本文引用: 1]

王汝恒贾彬邓安福 .

砂卵石土动力特性的动三轴试验研究

[J].岩石力学与工程学报,200625(增2):4059-4064.

[本文引用: 1]

Wang Ruheng Jia Bin Deng Anfu et al .

Dynamic triaxial testing study on dynamic characteristics of sandy pebble soil

[J]. Chinese Journal of Rock Mechanics and Engineering2006

25(Supp

.2):4059-4064.

[本文引用: 1]

何建平彭兴芝祖烨 .

砂卵石土动、静特性的对比试验研究

[J]. 长江科学院院报,2010278):40-43.

[本文引用: 1]

He Jianping Peng Xingzhi Zu Ye et al .

Experimental study on dynamic and static characteristics of sand and gravel soil

[J]. Journal of Yangtze River Scientific Research Institute2010278):40-43.

[本文引用: 1]

简鹏路军富钟英哲 .

基于不同密度与含水率下的砂卵石强度参数研究

[J]. 科学技术与工程,20161624):257-260.

[本文引用: 1]

Jian Peng Lu Junfu Zhong Yingzhe .

Study on strength parameter of sandy pebble soil based on different density and moisture content

[J].Science Technology and Engineering20161624):257-260.

[本文引用: 1]

吴东旭姚勇梅军 .

砂卵石土直剪试验颗粒离散元细观力学模拟

[J]. 工业建筑,2014445):79-84.

[本文引用: 1]

Wu Dongxu Yao Yong Mei Jun et al .

Micromechanics simulation of direct shear test of sandy pebble soil with discrete element method

[J]. Industrial Construction2014445):79-84.

[本文引用: 1]

胡敏徐国元胡盛斌 .

基于Eshelby张量和 Mori-Tanaka 等效方法的砂卵石土等效弹性模量研究

[J]. 岩土力学,2013345):1437-1442.

[本文引用: 1]

Hu Min Xu Guoyuan Hu Shengbin .

Study of equivalent elastic modulus of sand gravel soil with Eshelby tensor and Mori-Tanaka equivalent method

[J].Rock and Soil Mechanics2013345):1437-1442.

[本文引用: 1]

王新刚胡斌连宝琴 .

西藏邦铺矿区花岗岩剪切流变本构研究及其开挖边坡长期稳定性分析

[J].岩土力学,20143512):3496-3502.

[本文引用: 1]

Wang Xingang Hu Bin Lian Baoqin et al .

Granite shear rheological constitutive research of Bangpu mining area in Tibet and its excavation slope stability analysis for a long time

[J].Rock and Soil Mechanics20143512):3496-3502.

[本文引用: 1]

Maranini E Brignoli M .

Creep behavior of a weak rock: Experimental characterization

[J].International Journal of Rock Mechanics and Mining Sciences,1999361): 127-138.

[本文引用: 1]

Shao J F Zhu Q Z Su K .

Modeling of creep in rock materials in terms of material degradation

[J].Computers and Geotechnics,2003307): 549-555.

[本文引用: 1]

Slizowski J L .

Salt-mudstones and rock-salt suitabilityes for radioactive-waste storage systems: Rheological propertypes

[J]. Applied Energy,2003751):137-144.

[本文引用: 1]

Yang C H Daemen J J K Yin J H .

Experimental investigation of creep behavior of salt rock

[J].International Journal of Rock Mechanics and Mining Sciences,1999362):233-242.

[本文引用: 1]

杨圣奇徐卫亚谢守益 .

饱和状态下硬岩三轴流变变形与破裂机制研究

[J]. 岩土工程学报,2006288):962-969.

[本文引用: 1]

Yang Shengqi Xu Weiya Xie Shouyi et al .

Studies on triaxial rheological deformation and failure mechanism of hard rock in saturated state

[J].Chinese Journal of Geotechnical Engineering2006288):962-969.

[本文引用: 1]

齐亚静姜清辉王志俭 .

改进西原模型的三维蠕变本构方程及其参数辨识

[J]. 岩石力学与工程学报,2012312):347-355.

[本文引用: 1]

Qi Yajing Jiang Qinghui Wang Zhijian et al .

3D creep constitutive equation of modified Nishihara model and its parameters identification

[J].Chinese Journal of Rock Mechanics and Engineering2012312):347-355.

[本文引用: 1]

Fabre G Pellet F .

Creep and time-dependent damage in argillaceous rocks

[J].International Journal of Rock Mechanics and Mining Sciences,2006436):950-960.

[本文引用: 1]

王芝银李云鹏 .

岩体流变理论及其数值模拟

[M]. 北京科学出版社2008.

[本文引用: 1]

Wang Zhiyin Li Yunpeng .

Rock Rheology Theory and Numerical Simulation

[M]. BeijingScience Press2008.

[本文引用: 1]

Li Y S Xia C C .

Time-dependent tests on intact rocks in uniaxial compression

[J].International Journal of Rock Mechanics and Mining Sciences,2000373): 467-475.

[本文引用: 1]

李海洲杨天鸿夏冬 .

基于软岩流变特性的边坡动态稳定性分析

[J].东北大学学报,2013342):293-296.

[本文引用: 1]

Li Haizhou Yang Tianhong Xia Dong et al .

Slope stability analysis based on soft-rock rheological characteristics

[J].Journal of Northeastern University2013342):293-296.

[本文引用: 1]

郭万里朱俊高温彦锋 .

对粗粒科4种级配缩尺方法的统一解释

[J].岩土工程学报,2016388):1473-1480.

[本文引用: 1]

Guo Wanli Zhu Jungao Wen Yanfeng .

Unified description for four grading scale methods for coarse aggregate

[J].Chinese Journal of Geotechnical Engineering2016388):1473-1480.

[本文引用: 1]

孙钧 .

岩石流变力学及其工程应用研究的若干进展

[J].岩石力学与工程学报,2007266):1081-1106.

[本文引用: 1]

Sun Jun .

Rock rheological mechanics and its advance in engineering applications

[J].Chinese Journal of Rock Mechanics and Engineering2007266):1081-1106.

[本文引用: 1]

张清照沈明荣丁文其 .

锦屏绿片岩力学特性及长期强度特性研究

[J].岩石力学与工程学报,2012318):1642-1649.

[本文引用: 1]

Zhang Qingzhao Shen Mingrong Ding Wenqi .

Study of mechanical properties and long-term strength of Jinping green schist

[J]. Chinese Journal of Rock Mechanics and Engineering2012318):1642-1649.

[本文引用: 1]

徐卫亚杨圣奇 .

节理岩石剪切流变特性试验与模型研究

[J]. 岩石力学与工程学报,200524(增2):5536-5542.

[本文引用: 1]

Xu Weiya Yang Shengqi .

Experiment and modeling investigation on shear rheological property of joint rock

[J]. Chinese Journal of Rock Mechanics and Engineering2005

24(Supp

.2):5536-5542.

[本文引用: 1]

陈亮 .

深埋软岩隧道流变特征研究

[D].成都西南交通大学2014.

[本文引用: 1]

Chen Liang .

A Study on Rheological Characteristics of Soft Rock Tunnel with a Deep Overburden

[D]. ChengduSouthwest Jiaotong University2014.

[本文引用: 1]

王军保刘新荣黄明 .

低频循环荷载下盐岩轴向蠕变的 Burgers 模型分析

[J].岩土力学,2014354):933-941.

[本文引用: 1]

Wang Junbao Liu Xinrong Huang Ming et al .

Analysis of axial creep properties of salt rock under low frequency cyclic loading using Burgers model

[J]. Rock and Soil Mechanics2014354):933-941.

[本文引用: 1]

张明毕忠伟杨强 .

锦屏一级水电站大理岩蠕变试验与流变模型选择

[J].岩石力学与工程学报,2010,298):1530-1537.

[本文引用: 1]

Zhang Ming , Bi Zhongwei , Yang Qiang ,et al .

Creep test and rheological model selection of marble of Jinping I hydropower station

[J].Chinese Journal of Rock Mechanics and Engineering,2010,29(8):1530-1537.

[本文引用: 1]

王明芳胡斌蒋海飞 .

花岗岩剪切流变力学特性试验与模型

[J]. 中南大学学报(自然科学版),2014459):3111-3120.

[本文引用: 1]

Wang Mingfang Hu Bin Jiang Haifei et al .

Experiment and model investigation on shear rheological mechanical properties of granite

[J]. Journal of Central South University (Science and Technology)2014459):3111-3120.

[本文引用: 1]

中华人民共和国水利部.水力水电工程岩石试验规程:SL264-2001

[S]. 北京中国标准出版社2001.

[本文引用: 1]

The Ministry of Water Resources of the People’s Republic of China.Water conservancy and hydropower project order on rock test:SL264-2001

[S]. BeijingStandards Press of China2001.

[本文引用: 1]

/