基于神经网络与遗传算法的多目标充填料浆配比优化
|
肖文丰,陈建宏,陈毅,王喜梅
|
Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm
|
Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG
|
|
表1 充填料浆配比学习样本数据
|
Table 1 Filling slurry ratio data of learning samples
|
|
参数 | 序号 |
---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|
ω1 | 15.20 | 14.80 | 14.00 | 10.86 | 10.00 | 8.44 | 8.22 | 7.78 | 6.91 | 6.73 | 4.69 | 4.38 | ω2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω3 | 60.80 | 59.20 | 56.00 | 65.14 | 60.00 | 67.56 | 65.78 | 62.22 | 69.09 | 67.27 | 70.31 | 67.50 | 抗压强度/MPa | 3.67 | 3.64 | 2.89 | 2.43 | 1.64 | 1.59 | 1.54 | 1.48 | 1.14 | 0.84 | 0.54 | 0.43 | 参数 | 序号 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ω1 | 4.38 | 7.78 | 8.44 | 8.67 | 6.36 | 6.91 | 3.50 | 3.80 | 10.57 | 6.36 | 7.09 | 3.90 | ω2 | 0 | 15.56 | 16.89 | 17.73 | 12.73 | 13.82 | 14.00 | 15.20 | 0 | 0 | 14.18 | 15.60 | ω3 | 65.63 | 46.67 | 50.67 | 52.00 | 50.91 | 55.27 | 52.50 | 57.00 | 63.43 | 63.64 | 56.73 | 58.50 | 抗压强度/MPa | 0.43 | 0.43 | 2.31 | 2.21 | 1.49 | 1.67 | 0.53 | 0.67 | 2.28 | 0.90 | 1.85 | 0.74 |
|
|
|