基于神经网络与遗传算法的多目标充填料浆配比优化
肖文丰,陈建宏,陈毅,王喜梅

Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm
Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG
表2 充填料浆配比归一化后的样本数据
Table 2 Normalized samples data of filling slurry ratio
参数序号
123456789101112
ω110.9650.8970.6290.5550.4220.4030.3650.2910.2760.1010.085
ω2000000000000
ω30.5970.5300.3940.7810.5630.8830.8080.6570.9480.87110.881
抗压强度/MPa3.673.642.892.431.641.591.541.481.140.840.540.43
参数序号
131415161718192021222324
ω10.0750.3650.4220.4410.2440.29100.0250.6040.2440.3060.034
ω200.8970.97410.7340.7970.8070.877000.8180.900
ω30.80200.1690.2250.1790.3630.2460.4370.7090.7170.4250.500
抗压强度/MPa0.431.852.132.211.491.670.530.672.280.91.850.74