基于神经网络与遗传算法的多目标充填料浆配比优化
|
肖文丰,陈建宏,陈毅,王喜梅
|
Optimization of Multi-objective Filling Slurry Ratio Based on Neural Network and Genetic Algorithm
|
Wenfeng XIAO,Jianhong CHEN,Yi CHEN,Ximei WANG
|
|
表2 充填料浆配比归一化后的样本数据
|
Table 2 Normalized samples data of filling slurry ratio
|
|
参数 | 序号 |
---|
1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
---|
ω1 | 1 | 0.965 | 0.897 | 0.629 | 0.555 | 0.422 | 0.403 | 0.365 | 0.291 | 0.276 | 0.101 | 0.085 | ω2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | ω3 | 0.597 | 0.530 | 0.394 | 0.781 | 0.563 | 0.883 | 0.808 | 0.657 | 0.948 | 0.871 | 1 | 0.881 | 抗压强度/MPa | 3.67 | 3.64 | 2.89 | 2.43 | 1.64 | 1.59 | 1.54 | 1.48 | 1.14 | 0.84 | 0.54 | 0.43 | 参数 | 序号 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | ω1 | 0.075 | 0.365 | 0.422 | 0.441 | 0.244 | 0.291 | 0 | 0.025 | 0.604 | 0.244 | 0.306 | 0.034 | ω2 | 0 | 0.897 | 0.974 | 1 | 0.734 | 0.797 | 0.807 | 0.877 | 0 | 0 | 0.818 | 0.900 | ω3 | 0.802 | 0 | 0.169 | 0.225 | 0.179 | 0.363 | 0.246 | 0.437 | 0.709 | 0.717 | 0.425 | 0.500 | 抗压强度/MPa | 0.43 | 1.85 | 2.13 | 2.21 | 1.49 | 1.67 | 0.53 | 0.67 | 2.28 | 0.9 | 1.85 | 0.74 |
|
|
|