img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2019, 27(1): 33-40 doi: 10.11872/j.issn.1005-2518.2019.01.033

CSAMT方法在仓上金矿外围及深部找矿中的应用

冯欣欣, 董晴晴

1. 山东黄金地质矿产勘查有限公司,山东 莱州 261400

Application of CSAMT Method in Depth and Peripheral Prospecting of Cangshang Gold Deposit

FENG Xinxin, DONG Qingqing

1. Shandong Gold Geology and Mineral Resources Co. ,Ltd. ,Laizhou 261400,Shandong,China

收稿日期: 2018-05-08   修回日期: 2018-09-06   网络出版日期: 2019-03-11

Received: 2018-05-08   Revised: 2018-09-06   Online: 2019-03-11

作者简介 About authors

冯欣欣(1982-),男,河南焦作人,工程师,从事地球物理勘查工作44677037@qq.com 。

摘要

仓上金矿位于三山岛—仓上断裂西南部,西邻渤海湾,是我国大型露天金矿之一。至2005年闭坑后,在矿山外围及深部找矿一直未取得新进展。为加大勘探深度,探查矿区外围和深部断裂及岩体的空间展布情况,寻找深部金矿资源,采用CSAMT方法在该区开展了测深剖面勘查工作,并与以往的物探资料及331号地质剖面进行了综合对比分析,结果显示F1推断断层与三山岛—仓上断裂相吻合,提出验证钻孔1个。经钻探工程验证见金矿体,取得了较好的应用找矿效果,为下一步开展地质找矿提供了有价值的地球物理信息依据。

关键词: CSAMT ; 金矿体 ; 地球物理信息 ; 深部找矿 ; 仓上金矿 ; 三山岛—仓上断裂

Abstract

There are abundant gold resources in Jiaodong area, which are mainly controlled by Sanshandao-Cangshang fault, Jiaojia fault and Zhaoping fault.Three major gold metallogenic belts were formed in the area, where several large and super-large gold deposits have been found. Jiaodong area has provided a large amount of gold reserves, and it’s an significant gold concentration area and gold industrial base in China.The main research area in this paper is Cangshang gold deposit,which located in southwest of Sanshandao-Cangshang fault that adjacent to the Bohai Bay.It is one of the large open-air gold deposit in China. Since Cangshang gold deposit closure in 2005,Shandong Gold Group,many geological exploration agencies and scientific research institutes have conducted a lot of prospecting work around the mine,but no new progress has been made in prospecting.In order to find out the spatial distribution of the fault and rock mass in the depth and periphery of the mining area,and search for deep gold resources, geophysical exploration method was used to conduct deep exploration in the area,and the conventional electrical and magnetic exploration was compared with CSAMT (Controlled Source Audio-Frequency Magnetotellurics).The conventional electric and magnetic exploration is difficult to meet the needs of exploration because the the depth of conventional electric and magnetic exploration is relatively shallow,and the results are reflected on the plane.CSAMT was choose to conduct deep profile exploration in the area.Field construction was carried out in the northern part of the mining area, and two CSAMT sounding sections were arranged along the vertical direction of the Cangshang fault,numbered L4000 and L4300. The length of L4000 section was 1 440 m,and L4300 section was 1 160 m,line distance was 300 m,point distance was 40 m and azimuth angle was 120°.The emission dipole sources AB were arranged in parallel lines in the northeast.The dipole distance of AB was 1.2 km, the receiving dipole distance of MN was 40 m,the receiving and transmitting distance was 5 km, and the detection depth was 1 km.The frequency acquisition range was 1~7 680 Hz,with a total of 40 frequency points.In order to ensure the quality of data acquisition and reduce human interference,a 21 KAV high-power generator was used for power supply.The low frequency current (1 Hz) was not less than 18 A,the high frequency current (7 680 Hz) was not less than 5 A,and the current at intermediate frequency was decreasing.Data processing and inversion were carried out by using software CMTPro and CSAMT-SW V3.0.The data processing included data preprocessing,trip point removal,near-field source correction,static correction and two-dimensional joint inversion.Finally,a map was drawn and the inversion results were compared and analyzed comprehensively with previous geophysical prospecting data and geological profile 331.The inversion results of CSAMT showed that the resistivity characteristics of strata and rock mass were basically consistent with those of conventional electrical methods, and the inferred fault F1 was consistent with Sanshandao-Cangshang fault,indicating that this method has good application effect in this area.In order to verify the low-resistance abnormal zone (F1 fault),a verification borehole was deployed at the corresponding surface location.Through the verification of drilling project,fault mud,weak sericitization granite cataclastic rocks,cataclastic granite rocks and sericitization granite cataclastic rocks were found at the depth of 776.25 ~829.70 m,corresponding to the low-resistance abnormal zone (F1 fault).Gold orebodies were found in sericitization granitic cataclastic rocks,the highest grade is 7.30×10-6 after assay.In summary,good prospecting results are achieved while applying to the field geological exploration work,and will provide valuable geophysical information basis for further geological prospecting.

Keywords: CSAMT ; gold orebody ; geophysical information ; deep prospecting ; Cangshang gold deposit ; Sanshandao-Cangshang fault

PDF (3309KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

冯欣欣, 董晴晴. CSAMT方法在仓上金矿外围及深部找矿中的应用[J]. 黄金科学技术, 2019, 27(1): 33-40 doi:10.11872/j.issn.1005-2518.2019.01.033

FENG Xinxin, DONG Qingqing. Application of CSAMT Method in Depth and Peripheral Prospecting of Cangshang Gold Deposit[J]. Gold Science and Technology, 2019, 27(1): 33-40 doi:10.11872/j.issn.1005-2518.2019.01.033

可控源音频大地电磁法(CSAMT)是在大地电磁法的基础上,针对信号较弱、抗干扰能力较差的情况所提出的一种人工场源测深方法[1]。该方法抗干扰能力较强,提高了数据采集质量,因而被广泛应用于矿产资源勘查、水文地质勘查、环境地质勘查、地热勘查和地下水勘查等领域[2,3,4,5,6]

仓上金矿位于三山岛—仓上断裂西南部,是我国大型露天金矿之一。自2005年闭坑后,在矿山外围及深部进行了大量的地质、物探勘查工作,但一直未取得实质性找矿突破。因该区属滨海地区,地表为砂土地,接地条件较差,常规直流电法在该区应用效果一般,且勘探深度较浅。为了探查矿区外围和深部断裂及岩体的空间展布情况,寻找深部金矿资源,2015年山东黄金地勘公司在该区开展了可控源音频大地电磁法(CSAMT)测深剖面勘查工作,通过加大勘探深度,查明矿区成矿地质条件和矿体赋存情况,并与以往的物探资料及331号地质剖面进行综合对比分析,为后续地质探矿工程提供设计依据。

1 地质背景

1.1 区域地质特征

勘查区位于胶东半岛西北部,大地构造位置处于华北地块(Ⅰ)胶辽隆起区(Ⅲ)胶北断隆(Ⅲa1)胶北凸起(Ⅲa13)。

区内均被第四系砂土地及海水覆盖,仅在三山岛矿区处的小山丘上见有崔召单元二长花岗岩出露[7]。三山岛—仓上断裂带是区内主要控矿断裂,位于莱州市三山岛—仓上—潘家屋子一带,北东端及南西端延入渤海湾,陆地出露长约12 km,带宽20~400 m,在主断裂北部三山岛、新立一带,断裂主要发育在玲珑二长花岗岩体内,南部仓上一带,断裂沿变质岩与玲珑二长花岗岩接触带发育。断裂带总体走向40°~50°,平面上断裂带呈“S”形[8](图1)。

图1

图1   三山岛—仓上断裂带地质简图[6]

Fig.1   Geological diagram of Sanshandao-Cangshang fault zone[6]

Q-第四系;ICηγ24-玲珑超单元崔召单元二长花岗岩;qHτο43-马连庄超单元栾家寨单元变辉长岩;1.实测及推测断层;2.金矿体


1.2 矿区地质特征

矿区位于三山岛—仓上断裂带西南部,区内未见岩石露头,全部被第四系砂土地及海水覆盖。仅见新生代第四系(Q),以临沂组为主,旭口组沿矿区西北部边缘分布,沂河组沿河流广泛分布。仓上断裂位于三山岛—仓上断裂带的西南部,由仓上主干断裂及其上下盘相伴而生的羽支断裂和下盘相匹配的派生平行断裂组成,带长7 km。仓上主干断裂带宽50~200 m,呈“S”形展布,总体走向40°,倾向SE,倾角40°~75°。区内岩浆岩发育,主要为新太古代五台—阜平期马连庄序列、栖霞序列和中生代燕山早期玲珑序列,岩性主要为中细粒变质辉长岩(斜长角闪岩)、片麻状中细粒角闪黑云英云闪长岩和中粒二长花岗岩。蚀变带受三山岛—仓上断裂带控制,其特征与该断裂带一致。主裂面处蚀变岩分带明显,上盘至下盘的岩性依次为:黄铁绢英岩化花岗岩、黄铁绢英岩化花岗质碎裂岩、断层泥(主裂面)、黄铁绢英岩化碎裂岩、黄铁绢英岩化花岗质碎裂岩和黄铁绢英岩化花岗岩。其中,黄铁绢英岩化碎裂岩带蚀变与金矿化关系最密切,也是主矿体的赋存部位。

2 地球物理特征

2.1 磁性特征

2003年,山东省物化探勘察院在仓北地区开展了物探勘查工作,采用高精度磁测和激电中梯面积测量方法,取得了较好的物探效果[9]。仓上金矿北部1/5 000 T平面等值线图(图2)上显示,主断裂西北侧磁场低且平稳,东南侧磁场高且杂乱,反映出断层两侧的岩性不同,其中西北侧(下盘)为二长花岗岩分布区,东南侧(上盘)为变质岩分布区,主断裂位于磁场的最低处(图2)。

图2

图2   仓上金矿北部T平面等值线图

Fig.2   Plane isoline map of T in north of Cangshang gold deposit

1.海积沙;2.冲积物;3.中粒含黑云二长花岗岩;4.中细粒变辉长岩;5.黄铁绢英岩化碎裂岩


2.2 电阻率特征

仓上金矿北部1/5 000视电阻平面等值线图(图3)上显示,断裂带两侧视电阻率差异明显。北西侧(下盘)视电阻率较高且杂乱,视电阻率呈现南高北低的特征,视电阻率值在100~1 000 Ω·m之间,对应玲珑花岗岩分布区。南东侧(上盘)视电阻率较低且平稳,视电阻率值在50~200 Ω·m之间,对应变质岩分布区,主断裂带位于视电阻率的梯度带上(图3)。在北西侧有一处电阻率梯度带,走向NW,推断可能存在NW向断层。

图3

图3   仓上金矿北部视电阻率平面等值线图

Fig.3   Plane isoline map of apparent resistivity in north of Cangshang gold deposit

1.海积砂;2.冲积物;3.中粒含黑云二长花岗岩;4.中细粒变辉长岩;5.黄铁绢英岩化碎裂岩


3 CSAMT工作方法

3.1 野外工作方法

使用加拿大凤凰公司研发的V8多功能电法工作站进行野外数据采集工作[10],野外装置包含2个部分,即发射部分和接收部分[11]。发射部分为大功率发电机、发射机及控制盒子,接收部分为V8主机、3ER盒子及磁探头,两者通过GPS卫星时钟进行同步观测,极大地提高了测量精度[12,13]

在矿区北部,垂直仓上断裂走向布设2条CSAMT测深剖面,其中L4000剖面长度为1 440 m,L4300剖面长度为1 160 m,线距为300 m,点距为40 m,方位角为120°。在东北部平行测线布设发射电偶极源AB,AB偶极距为1.2 km,MN接收偶极距为40 m,收发距R为5 km,探测深度为1 km。频率采集范围为1~7 680 Hz,共40个频点,为保证数据采集质量,降低人文干扰,采用大功率供电,低频(1 Hz)电流不低于18 A,高频(7 680 Hz)电流不低于5 A,中间频率电流呈递减趋势。具体布置见图4

图4

图4   CSMAT发射及观测系统布置图

Fig.4   Layout plan of CSAMT launch and observation system


3.2 数据处理

野外采集的原始数据采用V8系统自带的处理软件CMTPro进行预处理,将预处理后的数据导入CSAMT-SW V3.0软件中进行近场源改正、静态校正和二维联合反演[14],并绘制成图。

4 勘查及研究成果

4.1 岩(矿)石物性

由于勘查区被第四系覆盖,因此收集了历年地质勘查报告中的电性特征资料,统计结果见表1。由表1可知,第四系(砂土层)电阻率最低,其次为斜长角闪岩和糜棱岩,花岗岩类较高。根据地层与岩体之间的电阻率差异,可划分出地层与岩体的界限,为CSAMT法勘查提供了物性前提条件[15]

表1   莱州北部地区物性统计

Table 1  Physical property statistics in the north of Laizhou

岩性标本数/个电阻率ρ/(Ω·m)
平均值变化范围
斜长角闪岩5232893~749
二长花岗岩96810490~1 167
绢英岩化花岗质碎裂岩741 200335~8 180
黄铁绢英岩化糜棱岩3086.941.5~209
第四系(砂土层)196030~90

新窗口打开| 下载CSV


4.2 CSAMT勘查成果解释

为查明三山岛—仓上断裂深部特征,在矿区北部331号地质勘探线附近布设2条CSAMT测深剖面,编号为L4000和L4300,线距为300 m,点距为40 m,测点位置见图5,剖面对比见图6

图5

图5   CSAMT测点位置及推断成果图

Fig.5   Diagram of CSAMT measure point location and inferred results

1.海积砂;2.冲积物;3.中粒含黑云二长花岗岩;4.中细粒变辉长岩;5.黄铁绢英岩化碎裂岩;6.331号地质勘探线;7.物探推测断层及编号;8.CSAMT测点;9.设计钻孔及编号;10.见矿钻孔及编号


图6

图6   CSAMT电阻率反演剖面与331号勘探线地质剖面对比图

Fig.6   Comparison diagram of CSAMT resistivity inversion profile and No.331 geological section


从电阻率特征及推断结果来看,L4000和L4300剖面主要反映出如下特征:

(1)2条剖面电阻率特征相似,总体表现为两端高阻、中间低阻的特征,其视电阻率等值线在横向上局部出现突变、不连续等特征,且突变处电阻率值高低有明显差异,根据隐伏构造的地球物理特征,推断出各条剖面反映的隐伏断裂位置及特征,具有较为清晰的横向分辨效果[16,17]

(2)2条剖面均反映出了三山岛—仓上断裂(F1断层)的特征,即倾向SE,倾角为55°~65°,在331勘探线地质剖面上对应位置处显示的三山岛—仓上断裂及深部延伸的产状一致,说明CSAMT法在垂向上能够分辨出大断裂,相对常规电法反映深度较大,且在滨海地区效果较好。

(3)在-400 m深度以浅,断层西北部表现为高阻特征,反映的是花岗岩体;东南部表现为中低阻特征,反映的是变质岩(斜长角闪岩、变辉长岩),与地质情况相吻合。在-400 m深度以深,属于高阻区,推测为花岗岩体引起。

(4)在-200 m深度处显示近水平的低阻异常带,推测区内存在EW向或NW向隐伏断层。

(5)主裂面上L4300剖面反映的低阻异常值比L4000剖面更低,“U”型异常更明显,梯度带等值线更密集,低阻异常带更宽大,且往下延伸至-1 000 m仍未封闭,说明三山岛—仓上断裂在L4300剖面附近及北部地段比南部L4000剖面附近更发育,蚀变更强烈,深度更深,找矿潜力更大,因此将该地段确定为下一步找矿的有利地段(图5)。

4.3 钻探验证

为验证低阻异常带,达到找矿的预期目的,在L4300剖面2400点附近提出验证钻孔JYK-1。随后,因设计钻孔在民房处,地勘公司以JYK-1为基准向西移动约250 m处进行钻探验证,钻孔编号为ZK319-1,位置见图5

钻孔钻至850.7 m终孔,分层情况及岩性见表2。在深度-776.25 m处见断层泥,-781.05~-782.05 m和-818.60~-822.20 m深度处见矿,最高品位为7.30×10-6,钻孔采样化验分析结果见表3

表2   ZK319-1钻孔分层情况及岩性

Table 2  Geological layering and lithology of ZK319-1

序号分层情况岩性
分层范围/m层厚/m
10.00~41.0041.00第四系海积砂及海泥
241.00~52.7011.70变辉长岩
352.70~767.20714.40混合岩化变辉长岩
4767.20~776.259.05碎裂状二长花岗岩
5776.25~776.450.20断层泥
6776.45~783.256.80弱绢英岩化花岗碎裂岩
7783.25~809.9026.65碎裂状花岗岩
8809.90~829.7019.80绢英岩化花岗质碎裂岩
9829.70~850.7021.00二长花岗岩

新窗口打开| 下载CSV


表3   ZK319-1钻孔采样化验分析结果

  Sampling and analysis results of ZK319-1

序号样品编号采样位置/m样长/mw(Au)/(×10-6
1H13778.65~779.851.200.63
2H15781.05~782.251.201.53
3H26818.60~819.801.201.53
4H27819.80~821.001.200.10
5H28821.00~822.201.207.30

新窗口打开| 下载CSV


通过钻孔验证,仓上断裂上盘为变质岩,下盘为花岗岩,断裂空间展布情况与CSAMT推断成果相吻合,在低阻异常带处见金矿体,说明仓上北部L4300线以北仍有找矿潜力,是下一步开展地质找矿的首选区域。

4.4 物探方法应用效果对比

将工作区内已完成的各种物探方法应用效果进行了整理分析和对比研究,其结果见图2、图3、图6和表4。通过对比可知,高精度磁测和常规电法仅反映在平面上,且探测深度较浅;CSAMT测量反映在垂向上,且探测深度较深;3种物探方法反映的地球物理特征均与地质情况相吻合,应用效果较好。

表4   仓北地区物探方法应用效果

Table 4  Application effect of geophysical prospecting method in the north of Cangshang

物探方法地球物理特征应用效果
上盘(变质岩)仓上断裂下盘(花岗岩)
高精度磁测高磁特征条带状低磁带低磁特征不受海滨砂土地影响,成果主要反映在平面上,地球物理特征与地质吻合,应用效果较好,但探测深度较浅
常规电法(激电中梯面积测量)低阻特征电阻率梯度带高阻特征受海滨砂土地影响较小,成果主要反映在平面上,地球物理特征与地质吻合,应用效果较好,但探测深度较浅
CSAMT测量-400 m以浅为中低阻特征,以深为中高阻特征电阻率梯度带及条带状低阻区高阻特征受海滨砂土地影响较小,成果主要反映在垂向上,不同深度地层及岩体的地球物理特征,与地质相吻合,应用效果较好,且探测深度较深,可达2 000 m

新窗口打开| 下载CSV


5 结论

(1)在滨海地区,CSAMT法、常规电法和高精度磁法均适用于地质找矿且应用效果较好。其中,常规电法和高精度磁法主要反映在平面上,探测深度较浅,在500 m以内;CSAMT法主要反映在垂向上,探测深度较深,最深可达2 000 m。

(2)查明了仓上金矿北部地区地下深部断裂及岩体的空间展布情况,推断F1断层与三山岛—仓上断裂吻合,在低阻异常带提出验证钻孔1个,经钻探工程验证见矿,最高品位达7.30×10-6,验证结果与CSAMT推断成果相吻合,说明CSAMT对于隐伏构造的探测具有较为清晰的横向分辨效果,使用此方法在仓上矿区进行勘查是可行的,探矿效果较好。

(3)通过对本次CSAMT资料及以前常规电法、高磁资料进行综合分析和对比研究,推测该区存在NW向断裂。

参考文献

王光杰王勇李帝铨.

基于遗传算法CSAMT反演计算研究

[J].地球物理学进展,2006214):1285-1289.

[本文引用: 1]

WangGuangjieWangYongLiDiquanet al.

The application of genetic algorithm to CSAMT inversion

[J].Progress in Geophysics2006214):1285-1289.

[本文引用: 1]

喻春陈永凌李建忠.

可控源音频大地电磁法在高楼山金矿深部找矿中的应用

[J].黄金科学技术,2016241):59-63.

[本文引用: 1]

YuChunChenYonglingLiJianzhonget al.

Application of CSAMT to deep mine prospecting in the Gaoloushan gold mine

[J].Gold Science and Technology2016241):59-63.

[本文引用: 1]

杨炳南周琦杜远生.

音频大地电磁法对深部隐伏构造的识别与应用:以贵州省松桃县李家湾锰矿为例

[J].地质科技情报,2015346):26-32.

[本文引用: 1]

YangBingnanZhouQiDuYuanshenget al.

Identification and application of audio magnetotellurics to the deep buried structure:A case study of Lijiawan manganese deposit at Songtao County in Guizhou Province

[J].Geological Science and Technology Information2015346):26-32

[本文引用: 1]

郑振云轩慎英郑洁.

可控源音频大地电磁测深法在甘肃寨上金矿区的找矿应用研究

[J].黄金科学技术,2017252):7-13.

[本文引用: 1]

ZhengZhenyunXuanShenyingZhengJieet al.

Application of controlled source audio magnetotelluric sounding method in prospecting of Zhaishang gold mine,Gansu Province

[J].Gold Science and Technology2017252):7-13.

[本文引用: 1]

龚飞底青云王光杰.

CSAMT方法对虎跳峡龙蟠右岸变形体的反应特征

[J].工程地质学报,2005134):542-545.

[本文引用: 1]

GongFeiDiQingyunWangGuangjieet al.

CSAMT method for exploration of deformation bodies in Longpan area

[J].Journal of Engineering Geology2005134):542-545.

[本文引用: 1]

李冰晁代超魏明君.

电磁测深技术在深部铁矿探测中的应用研究——以河南舞阳铁矿区为例

[J].中国地质,2013405):1644-1654.

[本文引用: 3]

LiBingChaoDaichaoWeiMingjunet al.

The application of electromagnetic sounding method to deep iron ore exploration:A case study of the Wuyang iron mining area of Henan

[J].Geology in China2013405):1644-1654.

[本文引用: 3]

王振军李伟明原波.

山东三山岛—新立—仓上金矿床构造叠加晕特征浅析

[J].黄金科学技术,2013214):48-53.

[本文引用: 1]

WangZhenjunLiWeimingYuanBo.

Features of structural superimposed halos in Sanshandao-Xinli-Cangshang gold deposits,Shandong Province

[J].Gold Science and Technology2013214):48-53.

[本文引用: 1]

宋明春张军进张丕建.

胶东三山岛北部海域超大型金矿床的发现及其构造—岩浆背景

[J].地质学报,2015892):365-383.

[本文引用: 1]

SongMingchunZhangJunjinZhangPijianet al.

Discovery and tectonic-magmatic background of superlarge gold deposit in offshore of northern Sanshandao,Shandong Peninsula,China

[J].Acta Geologica Sinica2015892):365-383.

[本文引用: 1]

王友芳孙世福张荣敏.

山东省莱州市仓上金矿北部含金破碎蚀变带物探普查成果报告

[R].济南山东省物化探勘查院2003.

[本文引用: 1]

WangYoufangSunShifuZhangRongminet al.

Results of geophysical survey of gold bearing fragmentation alteration zone in northern Cangshang gold deposit

Laizhou

Shandong

[R].JinanShandong Institute of Geophysical and Geochemical Exploration2003.

[本文引用: 1]

董坤薄杨.

V8工作站CSAMT勘探成果三维可视化研究

[J].赤峰学院学报(自然科学版),2013295):44-46.

[本文引用: 1]

DongKunBoYang.

Research on 3D visualization of CSAMT exploration results of V8 workstation

[J].Journal of Chifeng University(Natural Science Edition)2013295):44-46.

[本文引用: 1]

王若王妙月底青云.

CSAMT三维单分量有限元正演

[J].地球物理学进展,2014292):839-845.

[本文引用: 1]

WangRuoWangMiaoyueDiQingyunet al.

3DIC CSAMT modeling using finite element method

[J].Progress in Geophysics2014292):839-845.

[本文引用: 1]

段文旭肖宏跃刘垒.

CSAMT方法在铁矿勘探中的应用

[J].物探化探计算技术,2014362):190-193.

[本文引用: 1]

DuanWenxuXiaoHongyueLiuLeiet al.

Application of the CSAMT in iron mine exploration

[J].Computing Techniques for Geophysical and Geochemical Exploration2014362):190-193.

[本文引用: 1]

底青云王妙月石昆法.

高分辨V6系统在矿山顶板涌水隐患中的应用研究

[J].地球物理学报,2002455):744-748.

[本文引用: 1]

DiQingyunWangMiaoyueShiKunfaet al.

An applied study on prevention of water bursting disaster in mines with the high resolution V6 system

[J].Chinese Journal of Geophysics2002455):744-748.

[本文引用: 1]

夏训银王身龙王洪生.

CSAMT方法在铁路隧道勘探中的应用

[J].勘察科学技术,20064):61-64.

[本文引用: 1]

XiaXunyinWangShenlongWangHongshenget al.

Application of CSAMT to exploration of railway tunnel

[J].Site Investigation Science and Technology20064):61-64.

[本文引用: 1]

董晴晴冯欣欣.

AMT方法在深部断裂构造识别中的应用——以南吕—欣木金矿区为例

[J].山东国土资源,20163210):48-51.

[本文引用: 1]

DongQingqingFengXinxin.

Application of AMT technology in identifying deep fault structures——setting Nanlü-Xinmu gold mine as an example

[J]. Shandong Land and Resources20163210):48-51.

[本文引用: 1]

韦乖强赵慧赵秀玲.

CSAMT在隐伏地质构造勘查中的三维可视化应用

[J].山东国土资源,2015314):56-58.

[本文引用: 1]

WeiGuaiqiangZhaoHuiZhaoXiulinget al.

Application of three-dimensional visualization of CSAMT in exploring concealed geological structures

[J].Shandong Land and Resources2015314):56-58.

[本文引用: 1]

于昌明.

CSAMT方法在寻找隐伏金矿中的应用

[J].地球物理学报,1998411):133-138.

[本文引用: 1]

YuChangming.

The application of CSAMT method in looking for hidden gold mine

[J].Acta Geophysica Sinica1998411):133-138.

[本文引用: 1]

/