img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2019, 27(2): 265-270 doi: 10.11872/j.issn.1005-2518.2019.02.265

采选技术与矿山管理

尾砂浆干扰絮凝沉降机理研究

李宗楠,1,2, 郭利杰,1,2, 魏晓明1,2, 陈鑫政1,2

1. 北京矿冶科技集团有限公司,北京 100160

2. 国家金属矿绿色开采国际联合研究中心,北京 100260

Research on Flocculation and Settlement Mechanism of Tailings Slurry Disturbed

LI Zongnan,1,2, GUO Lijie,1,2, WEI Xiaoming1,2, CHEN Xinzheng1,2

1. Beijing General Research Institute of Mining and Metallurgy Technology Group,Beijing 100160,China

2. National Center for International Joint Research on Green Metal Mining,Beijing 100260,China

收稿日期: 2018-05-22   修回日期: 2018-09-12   网络出版日期: 2019-04-29

基金资助: 国家重点研发计划项目“深部金属矿协同开采理论与技术”(编号:2016YFC0600709)、国家重点研发计划项目“深部金属矿高效协同膏体充填技术”(编号:2017YFC0602903)和国家自然科学基金项目“采场充填体的三维应力解析及其强度设计理论”.  编号:51774040

Received: 2018-05-22   Revised: 2018-09-12   Online: 2019-04-29

作者简介 About authors

李宗楠(1985-),男,贵州六盘水人,工程师,从事矿山充填技术领域的研究工作lizongnanbgrimm@163.com , E-mail:lizongnanbgrimm@163.com

郭利杰(1980-),男,河南南乐人,教授,从事矿山充填技术与矿冶固废资源化利用方面的研究工作ljguo264@126.com , E-mail:ljguo264@126.com

摘要

低浓度尾砂浆高效沉降浓缩制备高浓度料浆是实现高质量充填的关键部分,在细尾砂砂浆中添加高分子絮凝剂可有效加速细尾砂浆的沉降过程,减少溢流跑浑,但添加絮凝剂往往导致较低的底流浓度,因而,难以满足尾砂浆制备要求。现有试验和研究结果表明:对絮凝沉降过程进行适当的干扰,可有效提高沉降速率,加快沉降并获得相对较高的底流浓度,针对这一情况,开展了动态絮凝沉降对比试验,研究扰动过程对絮凝沉降影响的内在机理,结果表明:在扰动耙架的影响下,絮凝沉降速率和沉降底流浓度可大幅增加,其中沉降速率增幅为24%,底流浓度增幅约为10%。针对这一试验结果进行了机理分析,认为引起絮凝沉降速率和底流浓度增加的原因可归结为干扰过程的3种效应,即“重塑作用”、“逸散作用”和“疏导作用”,并深入分析了3种效应的作用过程。

关键词: 尾砂浆 ; 干扰絮凝沉降 ; 超孔隙水压力 ; 絮团 ; 底流浓度 ; 絮凝沉降机理

Abstract

It is necessary for underground backfill to concentrate the tailing slurry at a higher level.Polyacrylamide which can effectively accelerate tailings sentiment and reduce the overflow sands,is an ordinary additive material in this process.However,flocculants-sedimentation always results in lower underflow density which is unreliable and is useless for backfilling.Still,research has shown that proper settling disturbance is beneficial to increase the density of settling underflow,such as deep cone thickener.The interaction between disturbance rake and flocs in a cone thickener is very complex.However,the core idea is that the disturbance process which destroys the water consolidation process of flocs.Research results at home and abroad has shown that the result of flow density by dynamic settling is much higher than that by natural flocculation settling.In this research direction,many scholars have gained some valuable experience,such as using computational fluid dynamics (CTD) to analyze the adsorption process of flocculants and analyze the shear effect to the activity of flocculants.Also,some used dynamic flocculation settling and rheological parameters to analyze the pressure rake of deep cone thickener,such as analysis about pressure rake in flocculation settling.The research process and conclusions are very helpful,but the dynamic effect of disturbed rake in flocculation settling process and its causation of concentration need to be further studied.In order to find out the internal mechanism of the dynamic settlement,some comparative experiments were carried out in this paper.It is shown that,a low frequency disturbance by the disturbed rake,the settling rate is significantly improved,with an increase rate of 24%,and the underflow density were greatly increase which up to 10% comparing to corresponding values in the static flocculants-settlement.Through the analysis,the reason of this results mostly attribute to three factors,that are reshaping-effect,scattering-effect and channel-effect.Reshaping-effect is that the disturbed rake continuously changes the spatial geometry shape of flocs in the settling process,promotes the wrapped water outflowing therefore increasing the settling rate.Scattering-effect is that the disturbed rake forms a velocity field in the settling space,which changes the settling path of flocs,promotes the reshaping-effect and discharge the micro-excess pore water in the flocs,thus affecting the settling rate.Channel-effect is that the small displacement of the rake makes it form a water micro passage behind the rake rotation path,which making excess pore water flow out,reducing the porosity in the Compaction Zone and increasing the underflow concentration.In this paper,the microscopic analysis of disturbing flocculation settling is focused on and three factors are analyzed and formed for reference.

Keywords: tailings ; disturbed flocculants-sedimentation ; excess pore water pressure ; flocs ; underflow density ; flocculation and settlement mechanism

PDF (4581KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李宗楠, 郭利杰, 魏晓明, 陈鑫政. 尾砂浆干扰絮凝沉降机理研究[J]. 黄金科学技术, 2019, 27(2): 265-270 doi:10.11872/j.issn.1005-2518.2019.02.265

LI Zongnan, GUO Lijie, WEI Xiaoming, CHEN Xinzheng. Research on Flocculation and Settlement Mechanism of Tailings Slurry Disturbed[J]. Gold Science and Technology, 2019, 27(2): 265-270 doi:10.11872/j.issn.1005-2518.2019.02.265

矿山选厂生产的尾砂料浆经沉降过程提高浓度后用于井下充填是矿山充填料浆制备的主要手段,然而,当尾砂颗粒较细时,尾砂自然沉降速率较慢,往往出现严重的溢流跑浑,因而难以实现有效的浓缩[1,2,3,4]。采用添加絮凝剂的方式,可加快尾砂沉降并减少溢流跑浑,是解决细尾砂沉降跑浑和高效浓缩的有效手段[5,6,7,8]。但是,添加絮凝剂后的尾砂浆底流浓度较低,往往难以满足矿山高浓度充填的目的,国内外对此采取的技术手段和措施主要是对絮凝沉降过程进行干扰,最大程度地减少或排除沉降絮团中的“包裹水”以达到提高絮凝沉降浓度的目的,深锥浓密机中的旋转耙架即是这一技术手段的典型应用[9,10,11,12,13,14,15,16]。然而,絮团的动态沉降过程与其吸水能力、尾砂颗粒的比表面积、干扰源特征等因素息息相关,沉降结果是多因素共同作用的结果,目前对其沉降规律研究不足。因此,开展动态絮凝沉降规律研究显得十分必要,是实现细尾砂浆高浓度充填的必由路径[17,18,19,20]

1 试验材料

对某矿山充填用细尾砂现场取样。在实验室内采用比重瓶法测得尾砂相对密度为3.04,采用容砂法测得尾砂堆积密度为1.40 g/cm3;采用烘干法测得尾砂天然含水率为0.58%;经XRD谱图分析得知,尾砂中以珍珠云母和皂石为主;粒度测试采用马尔文激光粒度测试仪,测得尾砂比表面积为0.890 m2/g,0.037 mm粒级以下尾砂颗粒占比为51.41%,0.075 mm粒级以下尾砂颗粒占比为63.58%。试验采用的聚丙烯酰胺(APAM)阴离子型有机高分子絮凝剂,为国产某知名品牌产品,试验样料为白色粉末,无毒、无味、无腐蚀性,相对分子量为8×106级。

2 低频动态絮凝沉降试验

为研究低频扰动絮凝沉降规律,制作了带扰动耙架的絮凝沉降装置,如图1所示。该装置由 2 000 mL标准量筒和旋转耙架组成,旋转耙架为竖向十字对称的4根直杆[图1(a)],其中,“a杆”旋转内径大于“b杆”,可形成2个旋转圆周,增大扰动范围,旋转轴的转速由可调频微型电机控制,实现0~1/4 r/min的扰动频率范围,图1(b)为试验过程中测试装置实物图[7,8,9]。试验主要测试计算底流浓度、沉降速率和固体通量指标[14,15,16,17,18,19,20]

图1

图1   干扰絮凝沉降测试装置

Fig.1   Testing device for disturbed flocculation settlement


试验方案设计:试验设置对照组和测试组,对照组采用量筒法开展静态絮凝沉降,测试组采用带扰动耙架的同规格量筒开展动态絮凝沉降试验,扰动耙架的扰动旋转速率经过多次反复预试验,得到综合效率最优转速为1/6 r/min,故设计试验转速为1/6 r/min,2组试验开展24 h后测底流浓度。试验组与对照组其他试验条件完全相同,具体试验指标如下:絮凝剂为某品牌70100型,絮凝剂用量分别为10 g/t和15 g/t,料浆质量浓度分别为10% 和12%。

3 结果分析

3.1 试验结果

按照试验设计开展了4组测试工作,测试指标包括底流浓度和沉降速率,并根据测试结果开展了固体通量的计算工作,测试结果如表1所示。

表1   沉降试验测试结果

Table 1  Test results of settlement

序号料浆质量浓度/%APM/(g·t-1)对照组测试组
沉降速率/(cm·min-1)底流浓度/%固体通量/(t·hr-1·m-2)沉降速率/(cm·min-1)底流浓度/%固体通量/(t·hr-1·m-2)
1101031.5758.102.0339.0064.102.51
2101537.9857.802.4545.5663.802.93
3121034.9159.302.7442.5565.503.34
4121535.0058.102.7545.7364.403.59

新窗口打开| 下载CSV


3.2 结果分析

(1)对表1沉降速率结果进行分析可知:对照组沉降速率介于31.57~37.98 cm/min之间,平均值为34.86 cm/min,而测试组沉降速率介于38.99~45.73 cm/min之间,平均值为43.21 cm/min,平均增幅为24%,绝对增量为8.3 cm/min,表明受低频扰动耙架的影响,尾砂絮凝沉降过程明显加快,平均增幅达24%。

(2)对表1底流浓度结果进行分析可知:对照组底流浓度介于58.1%~59.3%之间,平均值为58.3%;而测试组底流浓度介于63.8%~65.5%之间,平均值为64.5%。测试组较对照组平均增幅达10.5%,绝对增量为6.1%,表明受低频扰动耙架的影响,絮凝沉降的沉实区浓度显著增加。

(3)对表1固体通量结果进行分析可知:对照组固体通量介于2.03~2.75 t/(hrm-2)之间,测试组固体通量介于2.51~3.55 t/(hrm-2)之间,测试组较对照组的固体通量均有所增加,平均增幅为 0.6 t/(hrm-2),表明沉降效率综合指标有所提升。

从沉降速率、底流浓度和固体通量的测试结果来看,对絮凝沉降进行适当的干扰,有助于提高其沉降速率和底流浓度。

3.3 絮凝沉降机理与微超孔隙水

通过试验现象和测试结果可知,絮凝沉降出现“高沉速—低底流”现象,分析其形成原因如下:

(1)絮凝沉降过程中,絮凝剂高分子聚合物与尾砂细小颗粒形成的“超级”絮团,客观上减小了絮团颗粒的总比表面积,使得沉降过程中,受到水阻力作用力大幅减小,因而沉降速率增大。

(2)在沉降过程中絮团之间的相互接触、沉实和挤压促使絮团中的“包裹水”排除,随着絮凝沉降过程的进行,絮团之间的接触越来越密切,沉实作用越来越显著,絮团中“包裹水”的疏水通道不断受到上部絮团的堵塞,最终导致絮团中的“包裹水”完全不能排出而达到沉实平衡。“包裹水”的存在增大了沉实区的孔隙率,这一机制宏观上导致了絮凝沉降底流浓度的降低,同时,这一堵塞效应也引起了沉降区域(或沉实区域)微弱的超孔隙水压力,如图2(b)所示。

图2

图2   絮凝沉降前(a)和沉降后(b)砂浆中颗粒形态

Fig.2   Particle appearance contrast before and after flocculation in slurry


3.4 动态干扰作用机理分析

通过试验现象和试验结果,对于低频扰动絮凝沉降能够显著改善底流浓度并加速沉降过程这一现象的原因进行初步分析。

在动态干扰沉降过程中,低频扰动的干扰作用可划分为3种,即重塑作用、逸散作用和疏导作用。

(1)重塑作用。重塑作用主要发生在沉降区段,絮团受扰动力的影响,在自由沉降过程中,絮团最初形态受到干扰而发生空间几何形状的变化,这一变化在一定程度上促使絮团中的“包裹水”排出,改变了絮团在沉降过程中的受力状态,促进絮团快速沉降。

(2)逸散作用。扰动耙架在沉降区域中会形成一个速度场,这个速度场以扰动耙架旋转轴为中心,在以旋转轴为法线的平面上形成速度梯度。其中,耙架杆旋转的圆周上具有最大的逸散速度,絮团一方面受其自身有效自重应力的作用而发生垂直向下的自由沉降,产生自由沉降速度,另一方面在逸散作用下,形成水平的逸散速度,产生水平方向的运动分量,如图3所示。

图3

图3   逸散作用原理图

Fig.3   Principle diagram of escaping effect


显然,在逸散作用下,絮团的运动轨迹将不再是垂直向下的自由沉降,在自由沉降速度和逸散速度的作用下,沉降轨迹将变得复杂,由于受边界条件的制约,在沉降空间内,絮团颗粒将产生涡流运动,这种运动一方面促进了絮团的重塑作用,另一方面絮团运动方向的不断变化,促进了下部沉降区的“微超孔隙水”的外排,因而宏观上提高了沉降速率。

(3)疏导作用。疏导作用主要体现在扰动耙架对沉实区域的影响,在扰动耙架旋转圆周附近的沉实区域,耙架在微小的时间段t内,产生微小位移s,受高分子聚合物影响的尾砂絮团具有一定的“弹性后效”,因而,沉降区的尾砂无法立即对微小位移空间进行填充,因此,在旋转耙架运动后方将出现导水通道,导水通道的存在使得“微超孔隙水”得以向上排出,宏观上减小了沉实区域尾砂絮团的孔隙率,提高了絮凝沉降的底流浓度,如图4所示。

图4

图4   扰动架的疏导作用与导水通道

Fig.4   Dredging action and water guide channel by disturbing frame effect


4 结论

(1)开展了动态絮凝沉降(测试组)和静态絮凝沉降试验(对照组),试验结果表明,受低频扰动耙架的影响,尾砂絮凝沉降过程明显加快,平均增幅为24%,底流浓度明显提高,增幅为10%。

(2)絮凝沉降时,絮团中的“包裹水”和絮团间的“孔隙水”不能有效排出是影响沉降速率的重要原因,“包裹水”和“孔隙水”的存在,增大了沉实区域的孔隙率,是导致底流浓度降低的原因所在。

(3)动态絮凝沉降过程中的扰动作用,可划分为3种,分别为重塑作用、逸散作用和疏导作用。重塑作用是低频耙架在絮团沉降过程中不断改变絮团的空间几何形态,促进了“包裹水”外排,引起沉降速率的增加;逸散作用是低频旋转耙架在沉降空间形成速度场,改变了絮团的沉降路径,促进重塑作用过程和“微超孔隙水”的排出,因而对沉降速率有所影响;疏导作用是耙架微小运动位移使其形成导水通道,促进“孔隙水”的上排,减小了沉实区的孔隙率,提高了底流浓度。

参考文献

黄玉诚.

矿山充填理论与技术

[M].北京冶金工业出版社201412-22.

[本文引用: 1]

HuangYucheng.

Mine Filling Theory and Technology

[M].BeijingMetallurgical Industry Press201412-22.

[本文引用: 1]

OwenA TFawellP DSwiftJ Det al.

The impact of polyacrylamide flocculant solution age on flocculation performance

[J].International Journal of Mineral Processing2002671/2/3/4):123-144.

[本文引用: 1]

OwenA TNguyenT VFawellP D.

The effect of flocculant solution transport and addition conditions on feedwell performance in gravity thickeners

[J].International Journal of Mineral Processing2009932):115-127.

[本文引用: 1]

PatienceMAddai-MenashJRalstonJ.

Investigation of the effect of polymer structure type on flocculation,rheology and dewatering behaviour of kaolinite dispersions

[J].International Journal of Mineral Processing2003711/2/3/4):247-268.

[本文引用: 1]

WangX MZhaoBZhangQ Let al.

Cemented backfilling technology with unclassified tailings based on vertical sand silo

[J].Journal of Central South University of Technology2008156):801-807.

[本文引用: 1]

张钦礼陈秋松王新民.

全尾砂絮凝沉降参数GA-SVM优化预测模型研究

[J].中国安全生产科学技术,2014105):24-30.

[本文引用: 1]

ZhangQinliChenQiusongWangXinminet al.

Study on GA-SVM optimal prediction model on flocculating sedimentation parameter of unclassified tailings

[J].Journal of Safety Science and Technology2014105):24-30.

[本文引用: 1]

李辉王洪江吴爱祥.

基于尾砂沉降与流变特性的深锥浓密机压耙分析

[J].北京科技大学学报,20133512):1553-1558.

[本文引用: 2]

LiHuiWangHongjiangWuAixianget al.

Pressure rake analysis of deep cone thickeners based on tailings’ settlement and rheological characteristics

[J].Journal of University of Science and Technology Beijing20133512):1553-1558.

[本文引用: 2]

史秀志胡海燕杜向红.

立式砂仓尾砂浆液絮凝沉降试验研究

[J].矿冶工程,2010303):1-3,11.

[本文引用: 2]

ShiXiuzhiHuHaiyanDuXianghonget al.

Experimental study on flocculating sedimentation of tailings slurry in a vertical sand tank

[J].Mining and Metallurgical Engineering2010303):1-3,11.

[本文引用: 2]

卞继伟王新民肖崇春.

全尾砂动态絮凝沉降试验研究

[J].中南大学学报(自然科学版),20174812):3278-3283.

[本文引用: 2]

BianJiweiWangXinminXiaoChongchun.

Experimental study on dynamic flocculating sedimentation of unclassified tailings

[J].Journal of Central South University (Science and Technology)20174812):3278-3283.

[本文引用: 2]

李宗楠郭利杰余斌.

基于宾汉姆体的高浓度尾砂浆剪切变稀规律研究

[J].黄金科学技术,2017254):33-38.

[本文引用: 1]

LiZongnanGuoLijieYuBinet al.

Shearing thinning behavior of high concentration slurry based on Bingham model

[J].Gold Science and Technology2017254):33-38.

[本文引用: 1]

李宗楠郭利杰许文远.

极细粒级尾砂絮凝沉降规律试验研究

[J].中国矿业,201423(增2):215-218.

[本文引用: 1]

LiZongnanGuoLijieXuWenyuan.

et al.Experimental study on flocculation sedimentation of fine tailings

[J].China Mining Magazine2014

23(Supp

.2):215-218.

[本文引用: 1]

焦华喆王洪江吴爱祥.

全尾砂絮凝沉降规律及其机理

[J].北京科技大学学报,2010326):702-707.

[本文引用: 1]

JiaoHuazheWangHongjiangWuAixianget al.

Rule and mechanism of flocculation sedimentation of unclassified tailings

[J].Journal of University of Science and Technology Beijing2010326):702-707.

[本文引用: 1]

高维鸿王洪江陈辉.

尾矿动态浓密过程中底流浓度主要影响因素研究

[J].金属矿山,20164511):102-105.

[本文引用: 1]

GaoWeihongWangHongjiangChenHuiet al.

Study on main factors of underflow concentration in the dynamics thickening process of tailings

[J].Metal Mine20164511):102-105.

[本文引用: 1]

陈鑫政,郭利杰,李文臣,.

全尾砂沉降浓缩试验研究

[J]. 黄金科学技术, 2019, 27(1): 105-111.

[本文引用: 2]

ChenXinzheng,GuoLijie,LiWenchen,et al.

Experimental study on sedimentation and concentration of unclassified tailings

[J].Gold Science and Technology,2019, 27(1): 105-111.

[本文引用: 2]

LiW CFallM.

Sulphate effect on the early age strength and self-desiccation of cemented paste backfill

[J].Construction and Building Materials2016106296-304.

[本文引用: 2]

BassoulletPLe HirP.

In situ measurements of surficial mud strength:A new vane tester suitable for soft intertidal muds

[J].Continental Shelf Research2007278):1200-1205.

[本文引用: 2]

张钦礼周登辉王新民.

超细全尾砂絮凝沉降实验研究

[J].广西大学学报(自然科学版),2013382):451-455.

[本文引用: 2]

ZhangQinliZhouDenghuiWangXinminet al.

Experimental study on flocculating sedimentation of ultra-fine unclassified tailings

[J].Journal of Guangxi University(Natural Science Edition)2013382):451-455.

[本文引用: 2]

吴爱祥焦华喆王洪江.

深锥浓密机搅拌刮泥耙扭矩力学模型

[J].中南大学学报(自然科学版),2012434):1469-1474.

[本文引用: 2]

WuAixiangJiaoHuazheWangHongjianget al.

Mechanical model of scraper rake torque in deep-cone thickener

[J].Journal of Central South University(Science and Technology)2012434):1469-1474.

[本文引用: 2]

刘晓辉吴爱祥王洪江.

膏体充填尾矿浓密规律初探

[J].金属矿山,2009399):38-41.

[本文引用: 2]

LiuXiaohuiWuAixiangWangHongjianget al.

A primary discussion on the thickening law of paste-filling

[J].Metal Mine2009399):38-41.

[本文引用: 2]

陈辉王洪江吴爱祥.

哈尔滨某矿深锥浓密机的应用改造

[J].金属矿山,2015445):158-161.

[本文引用: 2]

ChenHuiWangHongjiangWuAixianget al.

Application and revamping of deep cone thickener on a mine in Harbin

[J].Metal Mine2015445):158-161.

[本文引用: 2]

/