基于PSO-RBF神经网络模型的岩爆倾向性预测
|
李任豪,顾合龙,李夕兵,侯奎奎,朱明德,王玺
|
A PSO-RBF Neural Network Model for Rockburst Tendency Prediction
|
Renhao LI,Helong GU,Xibing LI,Kuikui HOU,Deming ZHU,Xi WANG
|
|
表2 国内外工程岩爆数据
|
Table 2 Rockburst infomation at home and abroad
|
|
样本序号 | 岩爆指标 | 实际岩爆等级 |
---|
| / | / | Weq |
---|
1 | 170 | 0.53 | 15.04 | 9.00 | Ⅲ | 2 | 120 | 0.82 | 18.46 | 3.80 | Ⅲ | 3 | 140 | 0.77 | 17.50 | 5.50 | Ⅲ | 4 | 20 | 0.08 | 6.67 | 1.39 | Ⅰ | 5 | 120 | 0.37 | 24.00 | 5.10 | Ⅱ | 6 | 20 | 0.19 | 6.67 | 1.39 | Ⅰ | 7 | 120 | 0.61 | 24.00 | 5.10 | Ⅲ | 8 | 180 | 0.42 | 21.69 | 5.00 | Ⅲ | 9 | 140 | 0.77 | 17.50 | 5.50 | Ⅲ | 10 | 115 | 0.10 | 23.00 | 5.70 | Ⅰ | 11 | 176 | 0.31 | 24.11 | 9.30 | Ⅲ | 12 | 115 | 0.55 | 76.67 | 5.70 | Ⅲ | 13 | 165 | 0.38 | 17.55 | 9.00 | Ⅲ | 14 | 132 | 0.43 | 13.98 | 7.44 | Ⅲ | 15 | 128 | 0.55 | 14.66 | 6.43 | Ⅲ | 16 | 190 | 0.47 | 11.09 | 3.97 | Ⅲ | 17 | 170 | 0.53 | 9.92 | 3.97 | Ⅲ | 18 | 83 | 0.37 | 12.77 | 3.20 | Ⅱ | 19 | 226 | 0.40 | 13.14 | 7.30 | Ⅳ | 20 | 54 | 0.63 | 4.46 | 3.17 | Ⅱ | 21 | 237 | 0.44 | 13.42 | 6.38 | Ⅳ | 22 | 157 | 0.58 | 13.2 | 6.30 | Ⅳ | 23 | 148 | 0.45 | 17.5 | 5.10 | Ⅲ | 24 | 132 | 0.39 | 20.9 | 4.60 | Ⅲ | 25 | 107 | 0.20 | 41.0 | 1.70 | Ⅰ |
|
|
|