基于PSO-RBF神经网络模型的岩爆倾向性预测
李任豪,顾合龙,李夕兵,侯奎奎,朱明德,王玺

A PSO-RBF Neural Network Model for Rockburst Tendency Prediction
Renhao LI,Helong GU,Xibing LI,Kuikui HOU,Deming ZHU,Xi WANG
表2 国内外工程岩爆数据
Table 2 Rockburst infomation at home and abroad
样本序号岩爆指标实际岩爆等级
σcσθ?/σcσc?/σtWeq
11700.5315.049.00
21200.8218.463.80
31400.7717.505.50
4200.086.671.39
51200.3724.005.10
6200.196.671.39
71200.6124.005.10
81800.4221.695.00
91400.7717.505.50
101150.1023.005.70
111760.3124.119.30
121150.5576.675.70
131650.3817.559.00
141320.4313.987.44
151280.5514.666.43
161900.4711.093.97
171700.539.923.97
18830.3712.773.20
192260.4013.147.30
20540.634.463.17
212370.4413.426.38
221570.5813.26.30
231480.4517.55.10
241320.3920.94.60
251070.2041.01.70