img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2020, 28(2): 264-270 doi: 10.11872/j.issn.1005-2518.2020.02.030

采选技术与矿山管理

基于CRITIC-CW法的地下矿岩体质量评价

戚伟,1,2, 李威1, 李振阳3,4, 赵国彦3

1.山东黄金矿业(莱州)有限公司三山岛金矿,山东 莱州 261442

2.北京科技大学土木与资源工程学院,北京 100083

3.中南大学资源与安全工程学院,湖南 长沙 410083

4.北京奥信化工科技发展有限责任公司,北京 100040

Rock Mass Quality Evaluation of Underground Mine Based on CRITIC-CW Method

QI Wei,1,2, LI Wei1, LI Zhenyang3,4, ZHAO Guoyan3

1.Sanshandao Gold Mine,Shandong Gold Mining(Laizhou) Co. ,Ltd. ,Laizhou 261442,Shandong,China

2.School of Civil and Resources Engineering,University of Science and Technology Beijing,Beijing 100083,China

3.School of Resources and Safety Engineering,Central South University,Changsha 410083,Hunan,China

4.Beijing Auxin Chemical Technology Ltd,Beijing 100040,China

收稿日期: 2019-04-17   修回日期: 2019-11-03   网络出版日期: 2020-05-07

基金资助: “十三五”国家重点研发计划课题“深部金属矿绿色开采关键技术研发与示范”.  2018YFC0604606

Received: 2019-04-17   Revised: 2019-11-03   Online: 2020-05-07

作者简介 About authors

戚伟(1980-),男,山东泰安人,工程师,从事采矿工艺及岩石力学方面的研究工作qiwei109@163.com , E-mail:qiwei109@163.com

摘要

岩体质量评价结果是地下矿各类工程的重要基础数据。针对影响岩体质量的因素众多,且各因素间模糊性显著的特点,为更准确地评价地下矿岩体质量,提出了一种可定量分析影响岩体质量各因素间模糊性的CRITIC-CW法。选取了岩石质量指标RQD、岩石单轴饱和抗压强度RW、岩体完整性系数Kv、结构面强度系数Kf和地下水渗水量ω共5个指标用于评价地下矿岩体质量。收集了国内外20组岩体质量评价的样本数据,采用CRITIC法计算样本数据的离散性和内在联系,获得了评价指标的权重。采用CRITIC-CW法对20组岩体质量评价样本进行评价,结果误判仅为一例,表明CRITIC-CW法具有较高的准确性和可靠性。采用CRITIC-CW法对三山岛金矿新立矿区部分采场的岩体质量进行评价,结果表明:所评价采场的岩体质量主要为Ⅲ级和Ⅳ级,岩体质量较差,依据岩体质量评价结果,对评价等级为Ⅳ级的采场及周边工程加强支护后,矿区冒落现象显著减少。

关键词: 岩体质量评价 ; CRITIC ; 云模型(CW) ; 地下矿 ; 确定度 ; 三山岛金矿

Abstract

The rock mass of underground mine is a very complex dynamic system,which has many influencing factors.The rock mass quality evaluation is not only an important means to understand the characteristics of underground mine rock mass,but also an important basic data of underground mine design,construction and disaster prevention.The fuzzy and uncertainty of rock mass quality evaluation are strong.Cloud model theory can analyze the fuzzy and quantitative problems,which is very suitable for the random and fuzzy evaluation of multi indexes of rock mass quality evaluation.In order to evaluate the rock mass quality of underground mine more accurately and efficiently,the CRITIC-CW method was proposed,which can quantitatively analyze the fuzziness among many factors affecting the rock mass quality.According to the characteristics of many influencing factors of rock mass quality,rock quality index (RQD),rock uniaxial saturated compressive strength(RW),rock mass integrity coefficient(Kv),structural plane strength coefficient(Kf) and groundwater seepage amount(ω) were selected to evaluate the quality of underground mine and rock mass.20 groups of sample data of rock mass quality evaluation at home and abroad were collected.The original data were standardized,the standard deviation,the correlation coefficient and the amount of information were calculated by using critical method to quantify the discreteness and internal relationship of sample data,and then the weight of each evaluation index was obtained.Based on the CRITIC-CW method,20 groups of rock mass quality evaluation samples were evaluated,and only one case is misjudged,which shows that the CRITIC-CW method has high accuracy and reliability.Xinli mining area of Sanshandao gold mine is the only gold mine under the sea in China.The geological conditions of the mining area and the quality of surrounding rock are complex.In the production process,local pumice falling,roof falling,collapse and other disasters often occur due to blasting vibration,mechanical drilling and other activities,that seriously threatening the safety of mine production.In order to understand the rock mass quality of the mining area better,the CRITIC-CW method was used to evaluate the rock mass quality of some stopes in Xinli mining area of Sanshandao gold mine.The results show that the rock mass quality of the evaluated stopes is mainly class Ⅲ and class Ⅳ,and the rock mass quality is general.According to the results of the rock mass quality evaluation,after strengthening the support for the stopes and surrounding works with the evaluation class Ⅳ,the caving phenomenon of the mining area is obvious decrease.

Keywords: rock mass quality evaluation ; CRITIC ; Cloud Model (CW) ; underground mine ; degree of certainty ; Sanshandao gold mine

PDF (1661KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

戚伟, 李威, 李振阳, 赵国彦. 基于CRITIC-CW法的地下矿岩体质量评价[J]. 黄金科学技术, 2020, 28(2): 264-270 doi:10.11872/j.issn.1005-2518.2020.02.030

QI Wei, LI Wei, LI Zhenyang, ZHAO Guoyan. Rock Mass Quality Evaluation of Underground Mine Based on CRITIC-CW Method[J]. Gold Science and Technology, 2020, 28(2): 264-270 doi:10.11872/j.issn.1005-2518.2020.02.030

地下矿的岩体是一个极为复杂的动态系统,其影响因素众多。地下矿岩体质量评价不仅是了解地下矿岩体特性的重要手段,更是地下矿设计、施工及灾害防治等工作的重要基础数据,因此研究地下矿岩体质量评价具有重要意义[1,2,3]。国内外关于岩体质量评价的研究众多,早期的岩体质量评价方法主要有RQD法、Q法[4]、RMR法[5]和BQ法等[6,7,8,9,10]

近年来,随着数学及计算机科学的发展,大量新理论及数学方法被应用于岩体质量评价中,这些方法大致可划分为3类:(1)基于智能算法(随机森林、神经网络和极限学习机等)进行岩体质量评价,其特点是通过训练样本数据,拟合得到一种样本指标与岩体质量等级间的非线性函数[11,12,13];(2)基于距离判别(可拓理论和马氏距离等)的评价方法,其特点是通过构建样本与评价标准的上下区间的距离函数进行岩体质量评价[14,15,16,17];(3)基于修正系数的评价方法,其特点是对早期的岩体质量评价公式添加修正系数,使评价结果具有更好的适应性和准确率[18,19]。上述研究在岩体质量评价领域均取得了显著成效,但岩体质量评价的模糊性和不确定性较强,目前尚无统一的评价方法。云模型理论[20]可定量分析问题的模糊性,非常适用于岩体质量评价多指标间的随机性和模糊性评价。因此,本文引入云模型理论,并采用CRITIC法[21]确定评价指标的权重,以期丰富岩体质量评价相关理论与方法。

1 基础理论

1.1 CRITIC法

CRITIC法可通过分析各指标数据间的内在联系和离散性大小来计算各指标权重。其具体计算步骤主要有[21]

(1)数据标准化。假设有n个样本,每个样本有m个指标值,由于各指标间的量纲有所差异,采用式(1)对原始数据进行标准化:

aij=xij-xjminxjmax-xjmin

式中:aij为样本数据的标准化值;xij为第i个样本的第j项指标值;xjmax为指标j的最大值;xjmin为指标j的最小值。

(2)计算标准差。将指标j的指标向量记为Xj,其标准差记为σj

(3)计算相关系数。计算指标b与指标j的相关系数rbj

(4)计算信息量。指标j所拥有的信息量Cj的计算公式为

Cj=σjb=1m1-rbj (b=1,2,,m;
j=1,2,,m)

式中:σj为指标j的标准差。

(5)计算权重。各指标权重ωj计算公式为

ωj=Cj/j=1mCj

1.2 云模型(CW)

云模型[20]是一种可对定性概念采用定量数值表达的数学模型,已被成功应用于岩爆预测[22]和采矿区稳定性分析[23]等领域。设Y为一定量论域,CY上一定性概念,若论域中数值xC的确定度y(x)[0,1]是某一具有稳定倾向的随机数,则称数值x在论域Y上的分布为云,称任何一组(xy)为一个云滴。云滴的确定度定量表示了模糊性,可用某一概率分布函数表示。

期望Ex、熵En和超熵He为云模型的3个重要参数。其中,Ex为分布函数的期望,可较好地反映云模型的定性特征;En表示云滴离散性的大小;He表示En的熵值。

云发生器有正向云发生器和逆向云发生器2种。其中,由已知论域Y中某一数值x经云发生器生成定性概念C的分布的发生器称为正向云发生器,反之称为逆向云发生器。

正向云发生器算法的主要流程如下:

(1)计算期望Ex、熵En和超熵He

(2)生成高斯随机数。高斯随机数的计算公式为

En'=N(En,He2)

(3)生成另一个高斯随机数。计算公式为

x=N(En,En'2)

(4)计算确定度。确定度的计算公式为

y=exp-(x-Ex)22En'2

(5)重复N次流程(2)~(4),生成N个云滴。云模型的3个重要参数的计算公式为

Ex=Cmin+Cmax2En=Cmax-Cmin2.355He=k

式中:CmaxCmin分别为某等级标准的最大和最小边界值;k一般取0.002。

2 模型验证

2.1 岩体质量评价指标选取

地下矿的岩体质量受多因素共同影响,本文参考文献[24,25,26]中岩体质量的评价标准,选取了岩石质量指标RQD(X1)、岩石单轴饱和抗压强度RWX2)、岩体完整性系数Kv(X3)、结构面强度系数KfX4)和地下水渗水量ωX5)共5个指标来评价地下矿岩体质量,如表1所示。由表1可知,该标准将岩体质量划分为Ⅰ级、Ⅱ级、Ⅲ级、Ⅳ级和Ⅴ级,其中Ⅰ级表示岩体质量最好,Ⅴ级表示岩体质量最差。

表1   岩体质量分级标准[24,25,26]

Table 1  Standards for rock mass quality classification[24,25,26]

类别RQD/%RW/MPaKVKfω/[L·(min·10 m)-1
90~100200~1201.00~0.751.0~0.80~5
75~90120~600.75~0.450.8~0.65~10
50~7560~300.45~0.300.6~0.410~25
25~5030~150.30~0.200.4~0.225~125
0~2515~00.20~0.000.2~0.0125~300

新窗口打开| 下载CSV


2.2 基于CRITIC的指标权重确定

岩体质量不同评价指标间具有模糊性和不确定性,若对各指标均采用相同权重计算,显然不合理,因此,本文采用CRITIC法计算各指标的客观权重。以文献[24]数据作为样本数据,如表2所示。

表2   岩体质量评价样本数据

Table 2  Sample data for rock mass quality evaluation

样本评价指标实测等级本文结果
X1X2X3X4X5
171.890.10.570.450.0
251.040.20.380.5510.5
352.025.00.220.5212.0
468.090.00.380.3821.0
586.3105.00.680.756.3
678.875.00.530.658.8
768.852.50.410.5513.8
887.095.00.700.509.8
976.090.00.570.5011.0
1050.035.00.300.3520.0
1168.090.00.570.3518.5
1282.095.00.700.350.0
1375.087.30.300.630.0
1456.337.50.340.4521.3
1543.826.30.280.3550.6
1631.318.80.230.25100.0
1752.528.60.380.1623.0
18100.0200.01.001.000.0
1997.5180.00.940.951.3
2095.0160.00.880.952.5

新窗口打开| 下载CSV


采用第1.1小节中步骤(1)~(5)对表2中20组样本数据进行计算,得到了岩体质量评价的5项评价指标(X1,X2,X3,X4,X5)的权重,分别为0.1558、0.1416、0.1574、0.1608和0.3844。

2.3 分级结果确定及模型检验

基于高斯正向云发生器的计算流程,采用式(3),(4),(5),(6),(7)对表1中岩体质量评价标准生成云模型,指标j隶属于等级c的最大确定度取1,不同等级的边界处进行了模糊化处理,结果如图1所示。

图1

图1   各指标隶属于不同岩体质量等级的云模型

Fig.1   Cloud model with different rock mass quality grades for each index


由云发生器的计算步骤可知,云模型的计算过程复杂,需多次计算生成相应云滴,设有n个样本,每个样本有m个评价指标,则样本i的第j个指标隶属于等级q的确定度yijq采用式(8)计算:

yijq=s=1NyijqsN (i=1,2,,n;j=1,2,,m;q=1,2,,5;s=1,2,,1 000)

式中:N为云发生器运行次数,本文取N=1 000;yijqs为样本i的第j个指标隶属于等级q的第s次确定度。

样本i对等级q的确定度Yiq采用下式计算:

Yiq=j=1m(yijqωj) (i=1,2,,n;j=1,2,,m;q=1,2,,5)

式中:ωj为指标j的权重。

为验证本文CRITIC-CW方法的可靠性,选取了文献[21]中20组数据作为样本数据进行模型验证,采用第2.2小节中5项评价指标的权重,基于高斯正向云发生器算法,运用式(4),(5),(6),(7),(8),(9)对表2中20组岩体质量评价样本数据进行计算,计算结果如表2所示。由表2可知,只有样本17的评价结果失误,其余样本的评价结果均与实测等级相吻合,说明本文方法具有较高的准确性和可靠性,可用于岩体质量评价。

3 工程应用实例

3.1 工程概况

三山岛金矿新立矿区是我国唯一在采的海下金矿,矿区地质条件和围岩质量变化较复杂,在生产过程中,常由于爆破振动、机械凿岩等活动发生局部浮石掉落、冒顶和塌方等灾害,严重威胁着矿山的生产安全。因此,亟需对该区域岩体进行详细地质调查,并进行岩体质量评价,从而为后续施工方式和支护工艺的选择提供依据。本文选取了新立矿区-200 m中段、-240 m中段和-320 m中段部分典型区域的岩体进行了地质调查,获得了各项评价指标数据,如表3所示。

表3   新立矿区各评价指标实测值

Table 3  Measured values of each evaluation index in Xinli mining area

样本位置评价指标
X1X2X3X4X5
-200 m中段1#采场82810.400.4822.0
-200 m中段2#采场80810.400.4517.0
-240 m中段5#采场78800.430.4275.0
-320 m中段2#采场55820.430.4362.5
-320 m中段3#采场75780.400.4217.5

新窗口打开| 下载CSV


3.2 结果分析

运用CRITIC-CW方法对表3中各样本进行岩体质量评价,得到了各样本隶属于岩体质量等级Ⅰ~Ⅴ的确定度,如图2所示。由图2可知,各样本隶属于不同岩体质量等级的确定度曲线存在且只存在一个最大值,各样本确定度最大值对应岩体质量等级如表4所示。由表4可知,该矿区岩体质量主要为Ⅲ级和Ⅳ级,通过对比各样本5项指标值与岩体质量分级标准中不同等级5项指标的取值范围,可侧面验证表5中评价结果基本合理。该矿区围岩质量较差,不太稳固,在进行矿山工程建设中存在围岩冒落隐患,需对Ⅳ级围岩加强支护。经现场验证,对-240 m中段5#采场和-320 m中段2#采场及周围巷道采取了较-200 m中段1#采场周边巷道更小的锚杆支护间距,局部增加锚网支护后,该区域围岩冒落现象明显减少。

图2

图2   各样本隶属于不同岩体质量等级的确定度

Fig.2   Determination of different rock mass quality grades by different samples


表4   新立矿区样本评价结果

Table 4  Evaluation results of samples in Xinli mining area

样本位置最高确定度评价结果
-200 m中段1#采场0.6333
-200 m中段2#采场0.7067
-240 m中段5#采场0.4437
-320 m中段2#采场0.4578
-320 m中段3#采场0.7161

新窗口打开| 下载CSV


4 结论

(1)基于CRITIC法对20组岩体质量评价样本数据进行分析计算,挖掘其内在联系和离散性,得到了评价岩体质量的岩石质量指标、岩石单轴饱和抗压强度、岩体完整性系数、结构面强度系数和地下水渗水量5项指标的权重值。

(2)运用CRITIC-CW法对20组岩体的质量评价样本数据进行评价,并与20组样本的实测岩体质量等级进行对比分析,结果表明CRITIC法只有一个误判,其余评价结果均正确,说明CRITIC-CW法具有较高的准确性和可靠性。

(3)将CRITIC-CW法应用于三山岛金矿新立矿区部分区域岩体质量评价,结果表明该区域岩体质量主要为Ⅲ级和Ⅳ级,岩体质量较差,对岩体质量为Ⅳ级的巷道及采场裸露围岩需加强支护。

(4)CRITIC-CW法在评价岩体质量过程中侧重于量化分析评价指标间的模糊性,但影响岩体质量的因素众多,选取不同评价指标评价结果可能会有所差异,下一步将在本文基础上探索更加科学合理的岩体质量评价指标的选取方法。

参考文献

文畅平.

基于属性数学理论的岩体质量分级方法

[J].水力发电学报,2008273):75-80.

[本文引用: 1]

Wen Changping.

Classification of rock-mass stability based on attributive mathematical theory

[J].Journal of Hydroelectric Engineering2008273):75-80.

[本文引用: 1]

赵星光蔡明蔡美峰.

剪胀对地下工程岩体位移的影响——以加拿大 Donkin-Morien隧道为例

[J].岩石力学与工程学报,20102911):2186-2195.

[本文引用: 1]

Zhao XingguangCai MingCai Meifeng.

Influence of dilation on rock mass displacement around underground excavations:A case study of Donkin-Morien tunnel in Canada

[J].Chinese Journal of Rock Mechanics and Engineering20102911):2185-2195.

[本文引用: 1]

Cai MKaiser P.

Visualization of rock mass classification systems

[J].Geotechnical and Geological Engineering,2006244):1089-1102.

[本文引用: 1]

Barton NLien RLunde J.

Engineering classification of rock masses for the design of tunnel support

[J].Rock Mechanics,197464):189-236.

[本文引用: 1]

Bieniawski Z T.

Engineering classification of jointed rock masses

[J].Transactions of South African Institution of Civil Engineers,19731512):335-344.

[本文引用: 1]

邬爱清汪斌.

基于岩体质量指标BQ的岩质边坡工程岩体分级方法

[J].岩石力学与工程学报,2014334):699-706.

[本文引用: 1]

Wu AiqingWang Bin.

Engineering rock mass classification method based on rock mass quality index BQ for rock slope

[J].Chinese Journal of Rock Mechanics and Engineering2014334):699-706.

[本文引用: 1]

陈昌彦王贵荣.

各类岩体质量评价方法的相关性探讨

[J].岩石力学与工程学报,20022112):1894-1900.

[本文引用: 1]

Chen ChangyanWang Guirong.

Discussion on the interrelation of various rock mass quality classification systems at home and abroad

[J].Chinese Journal of Rock Mechanics and Engineering20022112):1894-1900.

[本文引用: 1]

许梦国王明旭王平.

程潮铁矿岩体分级及其在巷道支护中的应用

[J].黄金,2013344):41-45.

[本文引用: 1]

Xu MengguoWang MingxuWang Pinget al.

Rock mass classification and its application in tunnel support in Chengchao iron mine

[J].Gold2013344):41-45.

[本文引用: 1]

穆锡川李景波刘杰.

大柳行金矿床节理裂隙调查与岩体质量评价

[J].黄金,2017385):43-4653.

[本文引用: 1]

Mu XichuanLi JingboLiu Jieet al.

Investigation into the joint fissures and evaluation of rock mass quality in Daliuxing gold deposit

[J].Gold2017385):43-4653.

[本文引用: 1]

Shen Y JYan R XYang G Set al.

Comparisons of evaluation factors and application effects of the new[BQ]GSI system with international rock mass classification systems

[J].Geotechnical and Geological Engineering,2017356):2523-2548.

[本文引用: 1]

刘强李夕兵梁伟章.

岩体质量分类的PCA-RF模型及应用

[J].黄金科学技术,2018261):49-55.

[本文引用: 1]

Liu QiangLi XibingLiang Weizhang.

PCA-RF model for the classification of rock mass quality and its application

[J].Gold Science and Technology2018261):49-55.

[本文引用: 1]

张海磊严文炳郭生茂.

基于ELM模型的岩体质量分级及应用

[J].黄金,20183912):32-34.

[本文引用: 1]

Zhang HaileiYan WenbingGuo Shengmaoet al.

Classification of rock mass quality in a mine based on ELM model and its application

[J].Gold20183912):32-34.

[本文引用: 1]

邱道宏陈剑平阙金声.

基于粗糙集和人工神经网络的洞室岩体质量评价

[J].吉林大学学报(地球科学版),2008381):86-91.

[本文引用: 1]

Qiu DaohongChen JianpingQue Jinshenget al.

Evaluation of tunnel rock quality with routh sets theory and artificial neural networks

[J].Journal of Jilin University(Earth Science)2008381):86-91.

[本文引用: 1]

胡建华艾自华.

基于最优组合赋权的地下矿山岩体质量可拓评价模型

[J].黄金科学技术,2017254):39-45.

[本文引用: 1]

Hu JianhuaAi Zihua.

Extension evaluation model of rock mass quality for underground mine based on optimal combination weighting

[J].Gold Science and Technology2017254):39-45.

[本文引用: 1]

吴肖坤刘敦文江帆.

基于特征值域的可拓学理论的工程岩体质量评价

[J].黄金科学技术,2015232):68-75.

[本文引用: 1]

Wu XiaokunLiu DunwenJiang Fanet al.

Extension theory of engineering rock mass quality evaluation based on the feature range

[J].Gold Science and Technology2015232):68-75.

[本文引用: 1]

宫凤强李夕兵.

距离判别分析法在岩体质量等级分类中的应用

[J].岩石力学与工程学报,2007261):190-194.

[本文引用: 1]

Gong FengqiangLi Xibing.

Application of distance discriminant analysis method to classification of engineering quality of rock masses

[J].Chinese Journal of Rock Mechanics and Engineering2007261):190-194.

[本文引用: 1]

梁桂兰徐卫亚谈小龙.

基于熵权的可拓理论在岩体质量评价中的应用

[J].岩土力学,2010312):535-540.

[本文引用: 1]

Liang GuilanXu WeiyaTan Xiaolong.

Application of extension theory based on entropy weight to rock quality evaluation

[J].Rock and Soil Mechanics2010312):535-540.

[本文引用: 1]

陈赞成余斌胡建军.

呼的合铜矿工程地质调查与岩体质量评价

[J].黄金,2013346):35-39.

[本文引用: 1]

Chen ZanchengYu BinHu Jianjunet al.

Engineering geological investigation and rock mass quality evaluation of Hudehe copper mine

[J].Gold2013346):35-39.

[本文引用: 1]

McEwen TKapyaho AHella Pet al.

Rock suitability classification RSC 2012

[R].HelsinkiPosiva Oy2012.

[本文引用: 1]

李德毅杜鹢.不确定性人工智能[M].北京国防工业出版社2005.

[本文引用: 2]

Li DeyiDu Yu.Artificial Intelligence with Uncertainty [M].BeijingNational Defense Industry Press2005.

[本文引用: 2]

Diakoulaki DMavrotas GPapayannakis L.

Determining objective weights in multiple criteria problems:The CRITIC method

[J].Computers and Operations Research,1995227):763-770.

[本文引用: 3]

李绍红王少阳朱建东.

基于权重融合和云模型的岩爆倾向性预测研究

[J].岩土工程学报,2018406):1075-1083.

[本文引用: 1]

Li ShaohongWang ShaoyangZhu Jiandonget al.

Prediction of rock burst tendency based on weighted fusion and improved cloud model

[J].Chinese Journal of Geotechnical Engineering2018406):1075-1083.

[本文引用: 1]

赵国彦梁伟章洪昌寿.

采空区稳定性的改进云模型二维评判

[J].中国安全科学学报,20152510):102-108.

[本文引用: 1]

Zhao GuoyanLiang WeizhangHong Changshou.

Improved cloud model for two dimensional stability evaluation of goaf

[J].China Safety Science Journal20152510):102-108.

[本文引用: 1]

胡建华尚俊龙雷涛.

基于RS-TOPSIS法的地下工程岩体质量评价

[J].中南大学学报(自然科学版),20124311):4412-4419.

[本文引用: 4]

Hu JianhuaShang JunlongLei Tao.

Rock mass quality evaluation of underground engineering based on RS-TOPSIS method

[J].Journal of Central South University(Science and Technology)20124311):4412-4419.

[本文引用: 4]

蔡广奎.

围岩稳定性分类的BP 网络模型的研究

[D].南京河海大学2001.

[本文引用: 3]

Cai Guangkui.

Study of the BP Neural Network on the Stability Classification of Surrounding Rocks

[D].NanjingHehai University2001.

[本文引用: 3]

杨朝晖刘浩吾.

地下工程围岩稳定性分类的人工神经网络模型

[J].四川联合大学学报(工程科学版),199934):66-72.

[本文引用: 3]

Yang ChaohuiLiu Haowu.

Artificial neural network model for the stability classification of adjoining rock of underground construction

[J].Journal of Sichuan Union University(Engineering Science Edition)199934):66-72.

[本文引用: 3]

/