img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2020, 28(4): 565-574 doi: 10.11872/j.issn.1005-2518.2020.04.040

采选技术与矿山管理

基于组合赋权的T-FME岩爆倾向性预测模型研究及应用

李彤彤,1, 王玺2, 刘焕新2, 侯奎奎2, 李夕兵,1

1.中南大学资源与安全工程学院,湖南 长沙 410083

2.山东黄金集团有限公司深井开采实验室,山东 莱州 261400

Research and Application of T-FME Rockburst Propensity Prediction Model Based on Combination Weighting

LI Tongtong,1, WANG Xi2, LIU Huanxin2, HOU Kuikui2, LI Xibing,1

1.School of Resources and Safety Engineering, Central South University, Changsha 410083, Hunan, China

2.Deep Mining Laboratory of Shandong Gold Group Co. , Ltd. , Laizhou 261400, Shandong, China

通讯作者: 李夕兵(1962-),男,湖南宁乡人,教授,从事采矿与岩土方面的研究工作。xbli@mail.csu.edu.cn

收稿日期: 2020-01-19   修回日期: 2020-05-26   网络出版日期: 2020-08-27

基金资助: 国家自然科学基金重点项目“深部资源开采诱发岩体动力灾害机理与防控方法研究”.  41630642

Received: 2020-01-19   Revised: 2020-05-26   Online: 2020-08-27

作者简介 About authors

李彤彤(1996-),女,河北石家庄人,硕士研究生,从事岩石力学及地下工程深部灾害防治研究工作Littong@csu.edu.cn , E-mail:Littong@csu.edu.cn

摘要

为了提高岩爆倾向性预测模型的精度,确保岩爆多指标综合评价方法中指标赋权方式和关联度函数的选用更加全面合理,建立了基于组合赋权的T-FME岩爆倾向性预测模型。该模型在选取岩石脆性系数、切向应力指数和弹性应变能指数作为评价指标的基础上,由序关系分析法和Vague熵确定指标主、客观权重,引入最小鉴别信息原理对指标组合赋权,最后采用理想点法计算贴近度复合模糊物元得到岩爆倾向性等级。运用国内外15组工程岩爆实例对该模型进行测试,与其他模型预测结果进行对比,并将该模型应用于国内若干实际工程。结果表明:该模型预测精度更高,预测等级更加安全,对国内几项实际工程岩爆倾向性的预测等级与实际情况相符,说明该模型具有较强的适用性。

关键词: 岩爆预测 ; Vague熵 ; 最小鉴别信息原理 ; 组合赋权 ; 理想模糊物元 ; 贴近度复合模糊物元

Abstract

Due to the limitations of its own operating conditions,many multi-index comprehensive evaluation methods of rockburst are liable to cause low accuracy,and there is currently no unified prediction standard.In order to improve the accuracy of rockburst tendency prediction model,we must ensure that the index weighting method and the selection of the correlation function are more comprehensive and reasonable then a prediction model of T-FME rockburst tendency was established.According to the mechanism and condition of rock ex-plosion,brittle coefficient,tangential stress index and elastic strain energy index were selected as the evaluation indexes from three aspects:Surrounding rock stress,lithological conditions and surrounding rock energy storage.On the one hand,the excessive subjectivity of subjective judgments will affect the objectivity of index weights,on the other hand,in the case of limitated information,entropy weight method excessively depends on the degree of index variation will lead to bias.In order to make up for these deficiencies,the principle of minimum discriminant information was introduced,and the indicators were combined and weighted by combining the subjective and objective weights that the subjective weight of the indicator is determined by the ordinal relationship analysis method and the objective weight of the indicator was determined by the conventional entropy weight method which has been modified by the vague entropy.The T-FME rockburst propensity pre-diction model is based on the fuzzy matter-element analysis method and combines the principles of the TOPSIS method to construct the ideal fuzzy matter-element.The concept of ideal difference-square compound fuzzy matter-element was proposed.Post progress calculation has been optimized,the closeness compound fuzzy matter element was calculated.Finally,the degree of rockburst tendency can be obtained through the closeness analysis.Using the data of 15 domestic and foreign engineering rockburst examples to test the T-FME model and other 4 rockburst propensity prediction models that use different weighting methods and correlation degree functions,and these rockburst propensity prediction models are the ideal fuzzy matter element method based on Vague entropy weight,the ideal fuzzy matter-element method based on expert experience method,the euclid approach degree fuzzy matter-element method based on combined weighting,and the gray favorably membership degree fuzzy matter-element method.By analyzing the results of this test of these models,it is known that the prediction accuracy of the T-FME rockburst tendency prediction model is as high as 93.3%.Compared with other models,the accuracy of the prediction is improved by 6.6%~10.0%,and the prediction of the rockburst propensity level which is biased is higher than actual,so the prediction result is safer.Finally,the model was applied to 5 domestic practical projects,and the prediction results are consistent with the actual rockburst propensity level,which proves that the model has strong feasibility and applicability.

Keywords: rockburst prediction ; Vague entropy ; principle of minimum discriminating information ; com-bination weight ; ideal fuzzy-matter element ; closeness compound fuzzy-matter element

PDF (1415KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

李彤彤, 王玺, 刘焕新, 侯奎奎, 李夕兵. 基于组合赋权的T-FME岩爆倾向性预测模型研究及应用[J]. 黄金科学技术, 2020, 28(4): 565-574 doi:10.11872/j.issn.1005-2518.2020.04.040

LI Tongtong, WANG Xi, LIU Huanxin, HOU Kuikui, LI Xibing. Research and Application of T-FME Rockburst Propensity Prediction Model Based on Combination Weighting[J]. Gold Science and Technology, 2020, 28(4): 565-574 doi:10.11872/j.issn.1005-2518.2020.04.040

岩爆是指围岩在高地应力环境下,由于开挖等活动卸荷,突然释放弹性能导致岩石片状剥落、岩片弹射甚至抛掷,有时伴有裂爆声的现象。岩爆已成为矿山开采中的一种常见灾害,直接关系着工作人员和设备的安全,同时也为地下开采活动增加了一定的阻力和难度。随着地下开采活动不断增加,开采规模不断扩大,对岩爆进行准确预测已成为地下开采活动中必须要解决的问题[1]。近年来,许多国内外学者尝试从不同层面对岩爆现象进行研究[2-9],有学者从数学和人工智能技术的角度出发提出岩爆的多指标综合预测方法,使用较为广泛的有人工神经网络法[10]、AHP-TOPSIS法[11]和马氏距离判别法[12]等。预测岩爆的方法众多,但由于影响因素过于复杂,许多方法因自身条件限制而存在一定的局限性,因此关于预测岩爆模型的创新及改进具有重要的现实意义。

多指标综合评价法存在一个共同的问题,即如何全面合理地确定各评价指标的权重。指标权重赋值通常有主观赋权和客观赋权2种形式。主观赋权(如专家调查法)主观性过强且有的方法实施比较困难;客观赋权(如熵权法)过度依赖指标的变异程度,在信息数量受限的情况下不可信度增强。考虑到信息本身的模糊性和不确定性,本文采用序关系分析法确定的主观权重与Vague熵确定的客观权重相结合的方式,对岩爆特征指标进行组合赋权,既考虑了数据本身的信息,又尊重专家的经验判断,使各评价指标的权重更加贴合实际[13]。在适用于多指标评价问题的模糊物元分析法的基础上用理想点法进行模型优化,建立了一种更加合理的多指标岩爆倾向性预测模型。

1 组合赋权确定指标权重

1.1 序关系分析法设计主观权重

对于评价指标集{C1, C2,…, Cn },可根据专家经验确定指标序关系C1*>C2*>…>Cn*,并由专家给出相邻指标Cj-1Cj的重要程度之比rj的理性赋值。此时,可根据式(1)计算第j个指标的主观权重ηj[14]

ηn=1+j=2nk=jnrk-1ηj-1=rj*ηj                 

式中:ηn为第n个指标的主观权重;rj 为相邻评价指标的重要性程度之比, rj的赋值可参照表1进行。

表1   rj的赋值参考表

Table 1  Reference table for rj assignmet

rj说明
1.0指标Cj-1与指标Cj具有同样重要性
1.2指标Cj-1比指标Cj稍微重要
1.4指标Cj-1比指标Cj明显重要
1.6指标Cj-1比指标Cj强烈重要
1.8指标Cj-1比指标Cj极端重要

新窗口打开| 下载CSV


1.2 Vague熵设计客观权重

熵权法是结合模糊熵理论,由评价指标值构成的判断矩阵来确定指标权重,是一种客观赋权方法。普通的熵权法处理参数指标值比重pij时,若pij=0,则需设定ln(pij)=0,这种特殊设定使得数据的信息提取不够科学完整。另一方面,相对于Fuzzy集,Vague集不仅包括决策矩阵中数据的真、假隶属度,还包括犹豫度,对岩爆预测参数信息存在的模糊性和不确定性表达更加灵活准确,在此基础上确定的模糊熵更加适用于实际工程中数据信息的处理。本文采用Vague熵来确定各指标的客观权重[15]。设计步骤如下:

(1)单值数据进入Vague环境[16]。设已有样本集M={M1,M2,,Mm},指标集C={C1,C2,,Cn}。则可将指标值xij转化为Vague集数据。当指标值均为非负且为越大越优型指标时,可参照式(2)转换;当指标值均为非负且为越小越优型指标时,可参照式(3)转换。

tij1-fij=xij2-xjmin2xjmax2-xjmin21-xjmax-xijxjmax-xjmin 
tij1-fij=xjmax-xijxjmax-xjmin1-xij2-xjmin2xjmax2-xjmin2 

式中: xij为第i个样本Mi对第j个指标Cj的取值;xjminm个样本对第j个指标取值中的最小值,即xjmin=min1im xijxjmaxm个样本对第j个指标取值中的最大值,即xjmax =max1im xijtijxij转化为Vague集数据对应的真隶属度;fijxij转化为Vague集数据对应的假隶属度。

(2)计算指标Vague熵值Ej

Ej=1mi=1m2-2Sij2+πij3

式中:Sijxij转化为Vague集数据对应的真假隶属度值的差值的绝对值,即Sij=tij-fijπijxij转化为Vague集数据对应的犹豫度值,即πij=1-tij-fij

(3)归一化Vague熵的补值,计算指标的客观权重βj

βj=1-Ejj=1n(1-Ej)

1.3 特征指标组合赋权

为了使所求评价指标的权重既能包含专家经验的主观判断,又能被客观条件约束,应使所求的组合权重W=(w1,w2,…,wn)与主观权重η=( η1 η2,…, ηn)、客观权重β=( β1 β2,…, βn)的离异程度尽可能缩小。本文采用最小鉴别信息原理[17]来实现,可建立如下目标函数minF

min F=j=1nwjlnwjηj+j=1nwj(lnwjβj)j=1nwj=1                                                  wj 0                                                      

通过拉格朗日乘子法,求得组合权重 wj

wj=ηjβjj=1nηjβj

2 T-FME评价模型建立

2.1 复合模糊物元与理想模糊物元

给定事物集M 和特征集C,若M关于C有模糊量值μx),则可构成有序三元组,这种描述事物的基本元称为模糊物元R[18],记作:

R=MC,μ(x)

当有m个事物n个特征指标时,可构成m个事物的n维模糊复合物元,记作:

R(m,n)=
M1M2MiMmC1μ(x11)μ(x21)μ(xi1)μ(xm1)C2μ(x12)μ(x22)μ(xi2)μ(xm2)Cjμ(x1j)μ(x2j)μ(xij)μ(xmj)Cnμ(x1n)μ(x2n)μ(xin)μ(xmn)    (9)

式中: μ(xij)Mi对指标Cj的模糊量值,下文中记为μij

根据具体的指标类型,采用不同从优隶属函数进行计算,计算公式如下:

μij=xijxjmax   ()μij=xjminxij   ()

正、负理想模糊物元分别表示如下:

R+=C1C2CjCnM+μ1+μ2+μj+μn+
R-=C1C2CjCnM-μ1-μ2-μj-μn-

式中: μj+为样本对第j个指标的模糊量值取值的最大值,即μj+=max1im μijμj-为样本对第j个指标的模糊量值取值的最小值,即μj-=min1im μij

2.2 差平方复合模糊物元

当以ij+表示正理想模糊物元与复合模糊物元中各项差的平方时,则组成正理想差平方复合模糊物元ij+=(μj+-μij)2,同理可得负理想差平方复合模糊物元ij-=(μij-μj-)2,正、负差平方复合模糊物元分别表示如下:

ij+=M1M2MmC111+21+m1+C212+22+m2+Cn1n+2n+mn+
ij-=M1M2MmC111-21-m1-C212-22-m2-Cn2n-2n-mn-

2.3 基于贴近度的综合评价

根据从优隶属度原则,与正理想模糊物元贴近度越大,结果越理想。因此,采用理想点法正理想解贴近度作为评价标准。理想点法贴近度是通过计算评价对象与正、负理想解的距离,并采用一定的公式来表示评价对象与正理想解之间的贴近程度,评判对象与正理想模糊物元距离(Di+)和负理想模糊物元距离(Di-)的计算公式如下:

Di+=j=1nwj2ij+Di-=j=1nwj2ij-

由此可构成贴近度复合模糊物元RE+

RE+=M1M2MmEi+E1+E2+Em+

式中:Ei+为第i个样本的正理想解贴近度值,计算公式为Ei+=Di-/Di-+Di+

3 岩爆倾向性评价

3.1 岩爆评价指标选取

岩爆发生机制的影响因素众多,综合考虑内外两方面因素,本文从围岩应力、岩性条件和围岩储能3个方面,选取σθ/σcσc/σtWet共3项指标作为岩爆评价指标,其中σθ/σc为围岩切向应力与岩石单轴抗压强度之比,σc/σt为岩石单轴抗压强度与岩石单轴抗拉强度之比,Wet为岩石弹性应变能指数。

本文参考王元汉等[19]建立的岩爆倾向性分级标准,为了确保模型的适用性,并体现数据信息有限情况下组合赋权相对于客观赋权的优势,随机选取数据样本中的15组岩爆工程实例数据进行岩爆倾向性预测模型测试对比。该分级标准和测试样本数据分别见表2表3

表2   岩爆倾向性分级标准

Table 2  Classification criteria for rockburst tendency

分级标准σθ/σcσc/σtWet
<0.3>40.0<2.0
0.3~0.540.0~26.72.0~3.5
0.5~0.726.7~14.53.5~5.0
>0.7<14.5>5.0

注:Ⅰ、Ⅱ、Ⅲ和Ⅳ分别为无岩爆、弱岩爆、中等岩爆和强岩爆的等级符号

新窗口打开| 下载CSV


表3   国内外岩爆工程数据

Table 3  Domestic and foreign rockburst engineering data

工程编号σθ/σcσc/σtWet岩爆烈度分级实际情况描述数据资料来源
10.3246.6爆发频繁发生,属中等强度[19-20]
20.4129.77.3开挖初期即出现轻微围岩壁面爆裂,属弱岩爆[19-20]
30.10631.27.4无岩爆[19-20]
40.5314.89Ⅲ~Ⅳ片状剥落,岩片弹射崩落,顶板有爆烈声,属中—强岩爆[19-20]
50.3817.69Ⅱ~Ⅳ岩爆破坏规模不等,多数为中弱规模岩爆,少数为强岩爆[19-20]
60.096235.7无岩爆[19-20]
70.3624.65发生中级岩爆[19-20]
80.8218.53.8Ⅱ~Ⅲ发生中弱等级岩爆[19,21]
90.31524.19.3试验洞观察到发生中级岩爆[19,22]
100.2721.75观察到发生中级岩爆[19,23]
110.3724.15洞室岩石剥落与弹射,中级岩爆[22,24]
120.4221.75壁裂、有尖锐的爆裂声响,中级岩爆[22,24]
130.3821.75岩片弹射,伴有响声,中级岩爆[22,24]
140.31721.75弹射与剥落,中级岩爆[22,24]
150.37722.15侧壁发生中级岩爆[22,24]

新窗口打开| 下载CSV


3.2 特征指标组合赋权

根据表1表2,确定待评价事物集M={M1M2,,M15}和特征集C={σθ/σc,σc/σt,Wet}。

(1) 基于序关系分析法的主观权重。选取评价指标C1,C2,C3分别为σθ/σc,σc/σt,Wet。专家根据评价指标经验取值,给出r2=η1*η2*=1.4, r3=η2*η3*=1.2。根据式(1)可得评价指标σθ/σcσc/σtWet的序关系分析法权重系数分别为0.433、0.309和0.258。

(2)基于Vague集熵的客观权重。σc/σt为越大越优型数据,σθ/σcWet为越小越优型数据,分别按式(2)和式(3)进行转化。数据进入Vague环境之后按式(4)~(5)计算各指标的客观权重,计算结果见表4

表4   岩爆指标的Vague熵和客观权重

Table 4  Vague entropy and objective weights of rockburst indicators

指标σθ/σcσc/σtWet
熵值0.47150.52030.3949
Vague熵权0.3280.2970.375

新窗口打开| 下载CSV


(3)组合赋权。根据主客观指标权重和式(7)可得到指标组合权重,如表5所示。

表5   岩爆指标的各项权重

Table 5  Weights of rockburst indicators

指标σθ/σcσc/σtWet
主观权重0.4330.3090.258
客观权重0.3280.2970.375
组合权重0.3800.3060.314

新窗口打开| 下载CSV


3.3 综合评价模型建立

(1)模糊综合评价物元建立

①根据表1表2,可构建关于岩爆的模糊综合评价物元集:

R(3,19)T=σθ/σcσc/σtWetM10.30024.0006.600M20.41029.7007.300M30.10631.2007.400M40.53014.8009.000M50.38017.6009.000M60.09623.0005.700M70.36024.6005.000M80.82018.5003.800M90.31524.1009.300M100.27021.7005.000M110.37024.1005.000M120.42021.7005.000M130.38021.7005.000M140.31721.7005.000M150.37722.1005.0000.30040.0002.0000.300~0.50026.700~40.0002.000~3.5000.500~0.70014.500~26.7003.500~5.0000.70014.5005.000

②根据从优隶属度函数,σθ/σcWet为越小越优型,σc/σt为越大越优型,则相应的模糊量值可根据式(10)进行计算,构建复合模糊物元集:

R(3,19)T=σθ/σcσc/σtWetM10.3200.6000.303M20.2340.7430.274M30.9060.7800.270M40.1810.3700.222M50.2530.4400.222M61.0000.5750.351M70.2670.6150.400M80.1170.4630.526M90.3050.6030.215M100.3560.5430.400M110.2590.6030.400M120.2290.5430.400M130.2530.5430.400M140.3030.5430.400M150.2550.5530.4000.3201.0001.0000.320~0.1921.000~0.6681.000~0.5710.192~0.1370.668~0.3630.571~0.4000.1370.3630.400

③构建理想模糊物元。选取复合模糊物元中的正理想解和负理想解,分别构建正理想复合模糊物元R+和负理想复合模糊物元R-

R+=σθ/σcσc/σtWetM+1.0001.0001.000
R-=σθ/σcσc/σtWetM-0.1170.3630.215

④构建差平方复合模糊物元。根据式(13)和式(14)可构建正理想差平方复合模糊物元和负理想差平方复合模糊物元。正理想差平方复合模糊物元:

R(3,19)T=σθ/σcσc/σtWetM10.4620.1600.486M20.5870.0660.527M30.0090.0480.533M40.6710.3970.605M50.5590.3140.605M60.0000.1810.421M70.5380.1480.360M80.7800.2890.224M90.4830.1580.616M100.4150.2090.360M110.5480.1580.360M120.5950.2090.360M130.5590.2090.360M140.4860.2090.360M150.556 0.2000.3600.4620.0000.0000.462~0.6530.000~0.1100.000~0.1840.653~0.7450.110~0.4060.184~0.3600.7450.4060.360

负理想差平方复合模糊物元:

R(3,19)T=σθ/σcσc/σtWetM10.0410.0560.008M20.0140.1440.003M30.6220.1740.003M40.0040.0000.000M50.0180.0060.000M60.7800.0450.018M70.0220.0640.034M80.0000.0100.097M90.0350.0570.000M100.0570.0320.034M110.0200.0570.034M120.0120.0320.034M130.0180.0320.034M140.0350.0320.034M150.0190.0360.0340.0410.4060.6160.006~0.0410.093~0.4060.127~0.6160.000~0.0060.000~0.0930.034~0.1270.0000.0000.034

(2)贴近度计算

根据式(15)和式(16),可构建理想点法贴近度综合评价复合模糊物元:

RE+T=M10.233M20.250M30.575M40.053M50.121M60.588M70.239M80.203M90.212M100.263M110.231M120.194M130.205M140.232M150.2100.5560.298~0.5560.121~0.2980.121

(3)评价结果对比分析

将基于Vague熵权的理想模糊物元法[T(V)-FME]、基于专家经验GI法的理想模糊物元法[T(G)-FME]、基于组合赋权的欧式贴近度模糊物元法[E(C)-FME]、基于组合赋权的灰色从优隶属度模糊物元法[G(C)-FME]和本文方法(T-FME)的预测等级与实际岩爆烈度等级进行对比分析,结果见表6。5种预测方法的预测准确率对比分析见图1

表6   岩爆预测结果对比分析

Table 6  Comparative analysis of rockburst prediction results

工程编号模型预测等级实际等级
T(V)-FMET(G)-FME本文方法E(C)-FMEG(C)-FME
岩爆模型预测结果分析准确率较低准确率较高但出现不安全预测结果准确率较高且偏向安全结果准确率最低且出现不安全预测结果准确率较低
1
2(Ⅲ)(Ⅲ)(Ⅲ)(Ⅲ)(Ⅲ)
3(Ⅱ)(Ⅱ)(Ⅱ)
4Ⅲ~Ⅳ
5Ⅱ~Ⅳ
6(Ⅱ)(Ⅱ)(Ⅱ)
7
8Ⅱ~Ⅲ
9
10(Ⅱ)(Ⅱ)
11
12
13
14
15

注:预测结果若与实际情况不符,用“()”进行标注

新窗口打开| 下载CSV


图1

图1   5种岩爆倾向性预测模型预测结果对比

Fig.1   Comparison of prediction results of 5 rockburst propensity prediction models


表6预测结果可知,在信息量有限的情况下,组合赋权相对于单独的主客观赋权更具优势,理想点法计算贴近度综合考虑了正负理想解,比欧式贴近度更接近实际情况。综合评价分析5种预测模型可知,本文所建T-FME模型预测精度最高,本次预测的准确率达到93.3%,且预测结果比实际倾向性等级偏高,较其他4种方法更安全合理,更加贴近实际情况,有利于指导岩爆预防与实际工程作业。因此,该综合评价模型(T-FME模型)具有较强的合理性和可行性。

4 工程应用

为了验证本文基于组合赋权的T-FME岩爆倾向性预测模型的可靠性,选取小秦岭金矿、冬瓜山铜矿和平煤集团等工程项目中5组不同位置和岩性的岩爆特征性指标数据(工程编号为a、b、c、d和e)[25],运用该模型进行预测,得到理想点法贴近度综合评价复合模糊物元RE+T

RE+T=Ma0.263Mb0.155Mc0.462Md0.439Me0.1871.0000.429~1.0000.113~0.4290.113

根据贴近度综合评价复合模糊物元,预测小秦岭金矿888坑38号SM6200段、平煤集团和冬瓜山工程项目会发生中等岩爆,小秦岭金矿888坑38号SM4740段和SM4320段2个位置会发生弱岩爆。本次预测结果与工程实际情况对比见表7。由表7可知,T-FME模型的预测岩爆倾向性等级与工程实际岩爆等级基本一致,故该模型对岩爆倾向性预测具有较强的适用性,预测精度较高,能够为工程实践提供指导,具有较好的应用前景。

表7   国内若干工程岩爆倾向性预测

Table 7  Prediction of rockburst tendency in several domestic projects

工程名称工程编号岩性或位置σc/σtσθ/σcWet实际情况预测等级
平煤集团a三水平大巷岩爆位置15.30.5603.30
小秦岭金矿b888坑38号SM6200段12.20.5424.89
小秦岭金矿c888坑38号SM4740段30.70.4097.30
小秦岭金矿d888坑38号SM4320段29.80.4615.30
冬瓜山e矽卡岩11.10.5543.97

新窗口打开| 下载CSV


5 结论

(1)采用基于Vague熵的熵权法确定特征指标的客观权重,可弥补现有模糊熵的不足,预测结果表明该熵权法对客观权重的确定具有较强的可信度。

(2)通过最小鉴别信息原理综合利用主客观权重进行组合赋权,所得到的权重更全面合理,不仅克服了主观判断带来的局限性,而且避免了熵权法过度依赖指标变异程度,在信息有限的情况下会产生偏差的缺陷。

(3)无论是15个工程案例的测试结果,还是若干工程实例的岩爆倾向性预测结果,均表明本文所建立的T-FME岩爆倾向性分级预测模型的预测结果与实际相符,大幅提高了岩爆预测的精度,具有很好的实用性,且相比传统的物元分析模型更简便,具有良好的应用前景。

http://www.goldsci.ac.cn/article/2020/1005-2518/1005-2518-2020-28-4-565.shtml

参考文献

杨金林李夕兵周子龙.

基于粗糙集理论的岩爆预测模糊综合评价

[J].金属矿山,2010396):26-29.

[本文引用: 1]

Yang JinlinLi XibingZhou Zilonget al.

A fuzzy assessment method of rock-burst prediction based on set theory

[J].Metal Mine2010396):26-29.

[本文引用: 1]

宫凤强闫景一李夕兵.

基于线性储能规律和剩余弹性能指数的岩爆倾向性判据

[J].岩石力学与工程学报,2018379):1993-2014.

[本文引用: 1]

Gong FengqiangYan JingyiLi Xibing.

A new criterion of rock burst proneness based on the linear energy storage law and the residual elastic energy index

[J].Chinese Journal of Rock Mechanics and Engineering2018379):1993-2014.

[本文引用: 1]

李夕兵.岩石动力学基础与应用[M].北京科学出版社2014495-501.

Li Xibing.Rock Dynamics Fundamentals and Application[M].BeijingScience Press2014495-501.

Haijun CNenghui LDexin Net al.

Prediction of rockburst by artificial neural network

[J].Chinese Journal of Rock Mechanics and Engineering,2003225):762-768.

Park KLee JOwatsiriwong A.

Seepage force in a drained circular tunnel:An analytical approach

[J].Canadian Geotechnical Journal,2008453):432-436.

宫凤强李夕兵.

岩爆发生和烈度分级预测的距离判别方法及应用

[J].岩石力学与工程学报,2007265):1012-1018.

Gong FengqiangLi Xibing.

A distance discriminant analysis method for prediction of possibility and classification of rockburst and its application

[J].Chinese Journal of Rock Mechanics and Engineering2007265):1012-1018.

Kidybiński A.

Bursting liability indices of coal

[J].International Journal of Rock Mechanics and Mining Sciences & Geomech-anics Abstracts,1981184):295-304.

唐礼忠王文星.

一种新的岩爆倾向性指标

[J].岩石力学与工程学报,2002216):874-878.

Tang LizhongWang Wenxing.

New rock burst proneness index

[J].Chinese Journal of Rock Mechanics and Engineering2002216):874-878.

Russenes B.

Analysis of Rock Spalling for Tunnels in Steep Valley Sides

[D]. NorwegianNorwegian Institute of Technology1974.

[本文引用: 1]

白明洲王连俊许兆义.

岩爆危险性预测的神经网络模型及应用研究

[J].中国安全科学学报,2002124):65-69.

[本文引用: 1]

Bai MingzhouWang LianjunXu Zhouyi.

Study on a neutral model and its application in predicting the risk of rock blast

[J].China Safety Science Journal2002124):65-69.

[本文引用: 1]

陈建宏覃曹原邓东升.

基于AHP和物元TOPSIS法的层状岩体巷道冒顶风险评价

[J].黄金科学技术,2017251):55-60.

[本文引用: 1]

Chen JianhongQin CaoyuanDeng Dongsheng.

Risk assessment of bedded rock roadway roof fall based on AHP and Matter-Element TOPSIS method

[J].Gold Science and Technology2017251):55-60.

[本文引用: 1]

王晋李夕兵杨金林.

深部硬岩岩爆评判的加权马氏距离判别法

[J].采矿与安全工程学报,2011283):395-400.

[本文引用: 1]

Wang JinLi XibingYang Jinlin.

A weighted Mahalanobis distance discriminant analysis for predicting rock-burst in deep hard rocks

[J].Journal of Mining and Safety Engineering2011283):395-400.

[本文引用: 1]

毕傲睿骆正山王小完.

Vague集和熵综合赋权可拓评价模型及其工程应用

[J].系统工程,2018122):112-120.

[本文引用: 1]

Bi AoruiLuo ZhengshanWang Xiaowanet al.

Extension model weighted by vague sets and entropy method and its engineering application

[J].Systems Engineering2018122):112-120.

[本文引用: 1]

李刚王斌周立斌.

基于标准差修正G1组合赋权的人的全面发展评价模型及实证

[J].系统工程理论与实践,20123211):2473-2485.

[本文引用: 1]

Li GangWang BinZhou Libinet al.

The human all-round development evaluation model based on revised GI by standard deviation and empirical research

[J].Systems Engineering—Theory and Practice20123211):2473-2485.

[本文引用: 1]

Yu W ZTang D S.

Application of TOPSIS model based on Vague set entropy in the evaluation of groundwater quality

[J].Advanced Materials Research,2013712452-456.

[本文引用: 1]

王鸿绪.

单值数据转化为Vague值数据的定义和转化公式

[J].计算机工程与应用,20104624):42-44.

[本文引用: 1]

Wang Hongxu.

Definition and transforming formulas from single valued data to Vague valued data

[J].Computer Engineering and Applications20104624):42-44.

[本文引用: 1]

钟军刘明俊罗晨.

基于组合权重模糊物元模型的船桥碰撞风险评价

[J].安全与环境学报,2018182):423-428.

[本文引用: 1]

Zhong JunLiu MingjunLuo Chenet al.

Ship-bridge collision risk assessment based on the combined weights and matter element model

[J].Journal of Safety and Environment2018182):423-428.

[本文引用: 1]

肖芳淳.

模糊物元分析及其应用研究

[J].强度与环境,1995251-59.

[本文引用: 1]

Xiao Fangchun.

Study for Fuzzy-Matter-Element analysis and its applications

[J].Structure & Environment Engine-ering1995251-59.

[本文引用: 1]

王元汉李卧东李启光.

岩爆预测的模糊数学综合评判方法

[J].岩石力学与工程学报,1998175):493-501.

[本文引用: 1]

Wang YuanhanLi WodongLee P K Ket al.

Method of Fuzzy comprehensive evaluations for rockburst prediction

[J].Chinese Journal of Rock Mechanics and Engineering1998175):493-501.

[本文引用: 1]

贾愚如范正绮.

水工地下洞室中的岩爆机制与判据

[J].水力发电,19906):30-34.

Jia YuruFan Zhengqi.

Rock burst mechanism and criterion in underground cavern of hydraulic engineering

[J].Water Power19906):30-34.

单治钢.

锦屏二级水电站引水隧洞岩爆初步研究

[C]//第三届全国岩石动力学学术会议论文集.武汉武汉测绘科技大学出版社1992523-537.

Shan Zhigang.

Preliminary study on rockburst in diversion tunnel of Jinping Ⅱ hydropower station

[C]//Proceedings of the 3rd National Conference on Rock Dynamics.WuhanWuhan University of Surveying and Mapping Press1992523 - 537.

刘小明.

脆性岩石破坏机理试验研究及拉西瓦水电站地下洞室岩爆分析

[D].武汉武汉水利电力大学1995.

Liu Xiaoming.

Experimental Study on Brittle Rock Failure Mechanism and Rock Burst Analysis of Underground Cavern of Laxiwa Hydropower Station

[D].WuhanWuhan University of Water Resources and Electric Power1995.

陶振宇.

若干电站地下工程建设中的岩爆问题

[J].水力发电,19887):40-45.

Tao Zhenyu.

Rockburst problems in underground engineering construction of some power plants

[J].Hydroelectric Power19887):40 - 45.

张津生陆家佑贾愚如.

天生桥二级水电站引水隧洞岩爆研究

[J].水力发电,199110):34-3776.

Zhang JinshengLu JiayouJia Yuru.

Research on rock burst of diversion tunnel of Tianshengqiao Ⅱ Hydropower Station

[J].Water Power,1991(10):34-37, 76.

王旷李夕兵马春德.

基于改进的RS-TOPSIS模型的岩爆倾向性预测

[J].黄金科学技术,2019271):84-92.

[本文引用: 1]

Wang KuangLi XibingMa Chundeet al.

Rock-burst proneness prediction based on improved RS-TOPSIS model

[J].Gold Science and Technology2019271):84-92.

[本文引用: 1]

/