基于核主成分分析与SVM的岩爆烈度组合预测模型
许瑞,侯奎奎,王玺,刘兴全,李夕兵

Combined Prediction Model of Rockburst Intensity Based on Kernel Principal Component Analysis and SVM
Rui XU,Kuikui HOU,Xi WANG,Xingquan LIU,Xibing LI
表5 模型参数及模型训练集和测试集准确率
Table 5 Results for the SVM parameters,training set accuracy and test set accuracy
模型SVM参数训练集准确率/%测试集准确率/%
Cg
PCAGA-SVM81.471056.621296.884.6
PSO-SVM97.6345118.443198.284.6
KPCA1GA-SVM50.5654890.241594.673.1
PSO-SVM51.3095586.158889.676.9
KPCA2GA-SVM3.1284256.190591.488.5
PSO-SVM31.2537145.417894.692.3
KPCA3GA-SVM73.1933282.282193.280.8
PSO-SVM82.0614491.932297.788.5