img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2021, 29(4): 489-499 doi: 10.11872/j.issn.1005-2518.2021.04.022

矿产勘查与资源评价

西秦岭岷礼成矿带地球化学特征及其地质意义

马承,, 宋伊圩, 孙彪, 王占彬

中国地质调查局西安矿产资源调查中心,陕西 西安 710100

Geochemical Characteristics and Geological Significance of Minxian-Lixian Metallogenic Belt,Western Qinling Region

MA Cheng,, SONG Yiwei, SUN Biao, WANG Zhanbin

Xi’an Center of Mineral Resources Survey,China Geological Survey,Xi’an 710100,Shaanxi,China

收稿日期: 2021-01-28   修回日期: 2021-04-09   网络出版日期: 2021-10-08

基金资助: 中国地质调查局项目“甘肃寨上金矿岩金普查”.  DD20191018

Received: 2021-01-28   Revised: 2021-04-09   Online: 2021-10-08

作者简介 About authors

马承(1981-),男,甘肃定西人,高级工程师,从事矿产普查与勘查研究工作292834194@qq.com , E-mail:292834194@qq.com

摘要

通过对西秦岭岷礼成矿带化探数据中Au、Cu、Pb、Zn、W和Sn进行分形模型研究,发现Au和Sn具有多层次的地球化学场,指示该区Au和Sn具有更高的富集程度和成矿潜力。通过因子分析法得到的第一主因子(F1)的元素组合为Co-Cr-Cu-Ni-Ti-V-Zn,代表了晚古生代地层,其得分分布与区域铜、金矿化套合较好,表明矿化可能来自于该套地层。代表铅—锌、钨—锡矿化的因子(F2~F4)得分与晚三叠纪侵入岩体一致,表明该系列矿化与岩浆作用相关。F5因子只含有Au元素,表明金矿化更可能受区域复杂褶皱断裂系统的控制。研究结果将为岷礼成矿带地质找矿提供新的方向。

关键词: 分形模型 ; 因子分析 ; 地球化学特征 ; 矿化类型 ; 成矿潜力 ; 岷礼成矿带

Abstract

Minxian-Lixian metallogenic belt is rich in polymetallic resources in the west Qinling area,which has a complex tectonic history.However,there is still a lack of research on the geochemical anomaly patterns and ore-controlling factors of different types of deposits,which restricting the deployment of ore prospecting and exploration.To solve the problems,data of stream sediment geochemistry is utilized to study metallogenesis at a regional scale,to reveal the characteristics of distribution and association of geochemical elements,and thus provide important guidance for prospecting and exploration.A total of 4 095 samples were collected in the area and centered log-ratio(CLR) transformation was performed in the following to alleviate the skewness of raw data and make the element concentration tend to a normal distribution.Based on the fractal theory,Concentration-Area (C-A) models of Au,Cu,Pb,Zn,W and Sn have been established.It is found that elements of Au and Sn have multiple levels of geochemical fields,indicating that they have higher degree of enrichment and metallogenic potential.The geochemical anomalies of Au,Cu,Pb and Zn in the north subbelt can be roughly divided into two categories.One is related to the Late Triassic intrusive magmatism,where Suolong and Mawu gold deposit and Daijiazhuang Pb-Zn deposit expose.Another is related to the regional complex fault-fold system (Minxian-Tanchang fault and the Diebu anticline),where Zhaishang super-large gold deposit and several mineralization points expose.Also,anomalies of W and Sn show a strong spatial correlation with the Wuduojinhua pluton,hosting many mineralization points.Before performing factor analysis, Bartlett test of sphericity and KMO test were used to test the relevance of the selected data.The results show that the KMO value is 0.91,and Bartlett’s sphericity test also meets the conditions of factor analysis.The results of factor analysis indicate:(1)The element association of the first factor (F1) is Co-Cr-Cu-Ni-Ti-V-Zn,which represents the Late Paleozoic strata,and the factor score is consistent with the regional Cu,Zn mineralization,indicative of mineral sources from the strata.(2)The second factor (F2:As-Hg-Sb) represents the association of cryogenic elements,controlled by the Minxian-Tanchang fault and the Diebu anticline.(3)The third factor (F3:Bi-Sn-W) represents the element association of high temperature,controlled by Wuduojinhua pluton and the Diebu anticline.(4)The fourth factor (F4:Ba-Pb) shows similar patterns as F3;(5)The fifth factor (F5) has a single element of Au and it is irrelevant with the known Late Triassic magmatism,which indicates that the Au mineralization probably is related with complex tectonic system instead of magmatism.The main conclusions include:(1)C-A fractal model shows that elements of Au and Sn have higher degree of enrichment and metallogenic potential.(2)The results of factor analysis show that Cu and Zn mineralization probably come from the Late Paleozoic strata,Pb-Zn and W-Sn mineralization is related to magmatism of the late Triassic.The tectonic ore-controlling effect on Zhaishang gold deposit is more obvious.(3)Based on the combination of C-A fractal model and factor analysis,it is predicted that the Diebu anticline has a huge prospecting potential of Pb-Zn and W-Sn.

Keywords: fractal model ; factor analysis ; geochemical characteristics ; mineralization types ; metallogenetic potentiality ; Minxian-Lixian metallogenic belt

PDF (7348KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

马承, 宋伊圩, 孙彪, 王占彬. 西秦岭岷礼成矿带地球化学特征及其地质意义[J]. 黄金科学技术, 2021, 29(4): 489-499 doi:10.11872/j.issn.1005-2518.2021.04.022

MA Cheng, SONG Yiwei, SUN Biao, WANG Zhanbin. Geochemical Characteristics and Geological Significance of Minxian-Lixian Metallogenic Belt,Western Qinling Region[J]. Gold Science and Technology, 2021, 29(4): 489-499 doi:10.11872/j.issn.1005-2518.2021.04.022

岷礼成矿带位于甘肃省岷县—礼县一带,大地构造位置处于西秦岭造山带中段,是陆内造山—成矿耦合的关键部位。区内复杂的地质构造背景和晚三叠纪大规模的岩浆侵入,造就了巨大的成矿规模和丰富的成矿类型(刘建宏等,2006)。目前岷礼成矿带已经取得了一系列找矿勘查成果,已发现众多具有一定规模的金矿,如寨上、锁龙和马坞等金矿床,以及一系列金、铜、铅—锌和钨—锡矿化点。然而,对于区域上金多金属矿化的控矿因素尚存有争议,总体上持有2种观点:一种是岩体控矿(陈衍景等,2004Liu et al.,2015);另一种是构造控矿(Deng et al.,2016Goldfarb et al.,2019)。

勘查地球化学在该区前期的找矿工作中发挥了重要作用,但由于地球化学数据具有非线性、空间自相关性的特征(Cheng et al.,1994),采用传统方法处理复杂的化探数据效果并不理想。化探数据具有从区域尺度上进行矿床学宏观研究的优势,可以揭示元素在区域上的分布规律及元素组合特征,从而为找矿勘查提供重要指导(Cheng et al.,1994Pourgholam et al.,2020Yang et al.,2017)。分形模型能够定量表征非线性地质异常强度(成秋明,2006Cheng,2007),因而被广泛运用于地球化学数据的处理分析中,可以反映不同金属元素的富集程度(Alipour et al.,2020Aliyari et al.,2020Wang et al.,2010a2010bYang et al.,20152017Yasrebi et al.,2019)。因子分析是一种多元分析的数学方法,可减少多元数据中变量维数,突出多元数据中不明显的元素组合,强化矿床在表壳尺度直观的化学显示,揭示不同类型矿化的元素组合及其得分分布(Cheng et al.,1994Fyzollahhi et al.,2018Yang et al.,2017)。

本文利用该区水系沉积物地球化学测量数据进行统计计算,基于C-A分形模型圈定单元素异常,并利用因子分析法确定元素组合类型,从区域尺度上提取有用元素的综合地球化学信息,探索不同元素组合与不同类型矿化之间的关系,为该区地质找矿提供线索。

1 研究区地质概况

西秦岭位于秦岭造山带的西延部分,是一个“碰撞—陆内型”复合造山带,其北部和南部分别以深大断裂为界夹持于祁连造山带与松潘—甘孜褶皱带之间[图1(a)](冯益民等,2003张国伟等,2001)。分别以合作—岷县—宕昌断裂(F1)和迭部—成县—略阳断裂(F2)为界,西秦岭造山带内部可划分为北、中、南3个亚带。复杂的地质—构造—岩浆活动背景造就了西秦岭巨大的成矿规模和丰富的成矿类型,产出了大量金、铜、铅—锌、钨—锡矿床[图1(b)](陈彩华等,2017段永民等,2007董运如等,2019柯昌辉等,2020刘建宏等,2006吕喜旺等,2017)。

图1

图1   西秦岭造山带构造格架和岷礼成矿带地质简图

(a)西秦岭造山带构造格架(冯益民等,2003);(b)岷礼成矿带地质简图(肖林等,2007)1.新近纪/白垩纪;2.侏罗纪/三叠纪;3.二叠纪/石炭纪;4.泥盆纪/志留纪;5.吴家山岩群/鸳鸯镇蛇绿岩;6.三叠纪侵入岩;7.二叠纪侵入岩;8.超基性岩;9.地质界限/侵入岩体界限;10.区域断裂;11.金矿(点);12.铅锌矿(点);13.钨锡矿点;14.铜矿点

Fig.1   Tectonic framework of western Qinling orogenic belt and geological sketch map of Minxian-Lixian metallogenic belt


研究区覆盖西秦岭北、中、南3个亚带,岷县—宕昌断裂和迭部断裂从区内穿过[图1(a)]。区内北亚带经历了复杂的构造—岩浆活动,沿岷县—宕昌断裂发育有大量次级断裂,泥盆纪—晚二叠世地层呈复杂褶皱样式,与中—新生代地层呈不整合接触,晚三叠纪发生大规模花岗岩类岩体侵入,包括“五朵金花”(教场坝、闾井、柏家庄、中川和碌础坝岩体)和众多小型岩株[图1(b)]。中亚带主要出露三叠纪地层,是一套陆内裂陷沉积序列,发育低绿片岩相区域变质作用[图1(b)]。南亚带位于迭部地区,在研究区出露范围较小,构造变形强烈,各时代地层呈构造接触关系,总体呈背斜样式(迭部背斜)。

2 数据采集与分析

2.1 水系沉积物

本研究共采集4 095个水系沉积物样品,样品均匀覆盖岷礼成矿带全区(图2),采样密度约为1个/4 km2。本次分析的地球化学微量元素包括Ag、As、Ba、Co、Cr、Cu、Hg、Mn、Mo、Ni、Pb、Sb、Sn、Sr、Ti、V、W、Zn和Au(其中Au元素单位为×10-9,其他元素单位为×10-6)。

图2

图2   研究区高程图

Fig.2   Elevation map of the study area


多阶段成矿过程引起的地质异常会导致地球化学元素的偏正态分布,且水系沉积物地球化学数据是组合数据,代表一个封闭的数字系统,每个变量相互关联而非独立存在(成秋明,2006Cheng et al.,19942007),在相关性研究之前先进行中间对数比率转换,即求出各变量的几何平均值后取原始数据与该变量几何平均值的比值的对数。以岷礼成矿带Au元素为例,变化范围、几何均值和标准差依次为0.1×10-9~51.0×10-9、2.11×10-9和2.39,其地球化学原始数据具有偏度且为非正态分布[图3(a)3(b)]。经转换后Au元素变化范围、几何均值和标准差依次为-1.32~1.38、-1.22和0.31的无量纲数据,数据偏度减小,趋于正态分布[图3(c)3(d)]。

图3

图3   金浓度原始数据和经中间对数比率转换数据的直方图和Q-Q图

Fig.5   Histograms and Q-Q plots for raw data and centred log-ratio(CLR) transformed data of Au concentrations


2.2 因子分析

因子分析作为识别矿化相关元素组合的多元统计方法,可以剔除冗杂的不相关变量,从而得到可靠的因子载荷(Treiblmaier et al.,2010Yousefi et al.,20122014)。进行因子分析的前提条件是所选数据的相关关系必须通过Bartlett球度检验和KMO检验。通过检验,得到本次地球化学数据的KMO值为0.91,数据的Bartlett球度检验也符合因子分析的条件。主成分分析法(PCA)是因子分析的经典方法,其基于最大方差对组合数据进行旋转解析提取主要载荷。本研究选取每个因子中特征值大于0.5的元素得到各因子的元素组合(表1),主因子F1~F5元素组合分别为Co-Cr-Cu-Ni-Ti-V-Zn、As-Hg-Sb、Bi-Sn-W、Ba-Pb和Au。

表1   研究区水系沉积物地球化学数据因子分析结果

Table 1  Factor analysis results of stream sediment geochemical data in the study area

元素F1F2F3F4F5
特征值6.6521.9721.6041.3751.007
Ag0.2960.4090.1600.3300.241
As0.1110.7530.1100.0370.146
Au0.0980.1730.015-0.1840.806
Ba0.246-0.080-0.0770.7510.020
Bi0.1250.0580.8090.012-0.072
Co0.7490.1570.0910.168-0.018
Cr0.832-0.0190.1230.0630.030
Cu0.8370.2080.0930.0680.058
Hg0.1910.670-0.007-0.176-0.164
Mn0.5750.0710.2910.3060.251
Mo0.4110.438-0.0040.2920.079
Ni0.8360.0890.0270.0870.025
Pb0.1000.0470.4660.549-0.065
Sb0.0120.8120.012-0.0300.026
Sn0.295-0.0640.7920.0190.011
Sr0.0210.162-0.019-0.408-0.646
Ti0.741-0.0020.3470.0040.093
V0.8480.1370.1610.0430.009
W0.1920.2320.5850.0420.329
Zn0.6630.3030.2130.186-0.010

新窗口打开| 下载CSV


2.3 C-A分形模型

C-A分形模型(浓度—面积分形模型)定量刻画了元素的富集程度和空间分布的复杂程度,基于地球化学元素非正态分布的数学特性,能够将重要的矿化异常从地质背景中分离,强化异常的显示(Cheng et al.,1994)。本研究基于该理论计算得到Au、Cu、Pb、Zn、W和Sn的分形模式(图4)。元素的浓度—面积分形模型服从以下数学关系式:

A(c)c-α

式中:A(≥c)表示元素浓度大于等于常数c的面积;α为元素分形维数。

图4

图4   研究区不同元素C-A模型双对数图

Fig.4   Double logarithm graph of C-A fractal model of different elements in the study area


3 地球化学元素空间分布与元素组合特征

通过克里金插值法得到Au、Pb、Zn、Cu、W和Sn元素在岷礼成矿带的浓度空间分布,基于C-A分形模型对分布结果进行异常圈定。通过因子分析,得到与岩性和矿化相关的主因子,基于“平均值+两倍标准差”的方法实现因子得分的异常分级。

3.1 单元素空间分布

(1)Au分形模型表明Au元素在空间上具有多个层次的分布[图4(a)],包括0~2.29×10-9、2.29×10-9~8.68×10-9和>8.68×10-9 这3个浓度含量范围区间,分别代表背景区、低异常区和高异常区。本研究以8.68×10-9为Au元素异常下限。Au异常在岷县—宕昌断裂以北的北亚带较大范围内出露,其中,“五朵金花”和研究区西北部的响子沟岩体附近有大范围异常显示[图5(a)],寨上金矿虽然储量和品位都较高,但异常范围很小。中亚带三叠纪地层普遍表现出低背景区的特征,迭部断裂以南背斜存在大面积高异常值[图5(a)]。

图5

图5   研究区矿化元素空间分布图

Fig.5   Spatial distribution map of mineralization elements in the study area


(2)Cu分形模型表明Cu元素浓度具有2个层次的分布[图4(b)],以21.56×10-6为异常下限可划分为背景区和异常区。北亚带岷县—宕昌断裂北侧强烈的褶皱地层区显示大面积Cu异常,教场坝岩体附近异常范围较小,中亚带三叠纪地层有较弱的异常显示,研究区南部燕麦层岩体附近有较大范围的异常显示,南亚带在迭部断裂以南背斜有大面积高异常显示[图5(b)]。

(3)Pb分形模型表明以25.62×10-6为异常下限可划分为背景区和异常区[图4(c)]。Pb异常基本分布在北亚带,与晚三叠纪侵入岩体范围基本一致[图5(c)]。代家庄铅锌矿及众多铅锌矿化点均在异常区出露[图1(b)]。

(4)Zn分形模型表明以67.95×10-6为异常下限可划分为背景区和异常区[图4(d)]。在北亚带教场坝岩体、中亚带燕麦层岩体和南亚带迭部背斜晚古生代地层具有大面积高异常显示[图5(d)]。

(5)W、Sn分形模型分别以1.51×10-6和2.99×10-6为异常下限划分为背景区和异常区[图4(e)~4(f)]。2种元素高异常区在北亚带显示出与“五朵金花”岩体有很强的空间相关性,在南亚带迭部背斜中分布有少量异常[图5(e)~5(f)]。

3.2 元素组合特征及空间分布

对岷礼成矿带水系沉积物地球化学数据进行因子分析后共获得5个主因子(表1)。其中,F1因子代表Co-Cr-Cu-Ni-Ti-V-Zn的元素组合,因子得分基本分布在研究区较老的晚古生代泥盆—二叠纪下伏地层和元古宙基底中,晚古生代地层中出露有铜—铅—锌矿化点[图6(a)];F2因子代表As-Hg-Sb的元素组合,因子得分基本分布在迭部背斜中[图6(b)];F3因子代表Bi-Sn-W的元素组合,是一套与岩浆岩相关的矿化元素组合,因子得分与区域分布的中酸性岩浆岩有密切关系,在北亚带与“五朵金花”岩体具有空间套合关系,出露有钨—锡矿化点,在南亚带迭部背斜F3因子得分很高,但没有钨—锡矿点[图6(c)];F4因子代表Ba-Pb的元素组合,因子得分在北亚带“五朵金花”岩体和南亚带迭部背斜具有空间一致性,且出露有大量的铅(—锌)矿[图6(d)];F5因子只有Au元素,因子得分与Au单元素浓度分布空间特征基本一致[图5(a)]。

图6

图6   研究区各因子得分分布图

Fig.6   Distribution map of each factor scores in the study area


4 讨论

4.1 单元素浓度的空间分布

本研究基于C-A分形模型,实现了对岷礼成矿带Au、Cu、Pb、Zn、W和Sn 6种成矿元素的背景区和异常区的分离(图4图5)。其中,Cu、Pb、Zn和W元素具有背景区和异常区2个地球化学场[图4(b)~4(e)]。Au和Sn元素具有多个层次的地球化学场[图4(a),图4(f)],表明Au和Sn元素具有更高的富集程度(柯贤忠等,2015向中林等,2019)。北亚带Au、Cu、Pb和Zn异常区大致可划分为2类:一类异常与区域晚三叠纪大规模侵入岩体有关,出露有锁龙金矿、马坞金矿和代家庄铅锌矿以及若干矿化点;另一类异常与区域复杂断裂—褶皱系统(岷县—宕昌断裂、迭部背斜)有关,出露有寨上超大型金矿和若干矿化点[图1,图5(a)~5(d)]。W和Sn异常与“五朵金花”岩体具有很强的空间相关性,出露众多矿化点。中亚带和南亚带虽然有一定矿化元素异常显示,但只有南亚带迭部地区产出有金矿[图1(b)]。以上单元素异常的发现,表明研究区南部迭部背斜具有良好的多金属找矿前景。

4.2 元素组合的指示意义

对水系沉积物地球化学数据进行因子分析处理后,能够有效识别区域地质背景与矿化的地球化学场(Afzal et al.,2016Asadi et al.,2014Yang et al.,2017)。第一主因子F1(Co-Cr-Cu-Ni-Ti-V-Zn)受岩性控制,代表了区域上晚古生代变质岩系和元古宙结晶基底,F1元素组合含有Cu和Zn,铜、铅锌矿基本分布于晚古生代地层中F1高因子得分地区,表明区域上铜、锌矿化可能部分来源于该套地层[图6(a)]。第二主因子F2(As-Hg-Sb)代表了常见的低温元素组合,主要受岷县—宕昌断裂和南亚带迭部背斜的控制,可能是浅成低温热液活动的记录[图6(b)]。第三主因子F3(Bi-Sn-W)代表了常见的高温成矿元素组合,主要受北亚带“五朵金花”岩体和南亚带迭部背斜的控制,表明迭部背斜可能存在多期次(低温与高温)的岩浆热液活动,目前已知的“五朵金花”岩体附近存在大量钨—锡矿化,推测在迭部背斜深部具有钨—锡矿的找矿潜力[图6(c)]。第四主因子F4(Ba-Pb)主要代表铅矿化,陇西县高因子得分可能是受金属元素向低海拔汇水盆地迁移的影响(图2),总体来说F4因子受北亚带“五朵金花”岩体和迭部背斜的控制,北亚带已发现大量有价值的铅锌矿化点,可以看出迭部地区多金属成矿潜力巨大[图6(d)]。第五主因子F5只有Au元素,表明岷礼成矿带金矿化可能是相对独立事件,与已知的晚三叠纪岩浆侵入事件无太大关联,已有大量的矿床地球化学证据表明锁龙和马坞金矿是与“五朵金花”岩体有密切成因联系的(类)卡林型金矿(刘坤等,2014刘天航,2017),但寨上金矿与已知岩体较远,考虑到其巨大的成矿规模,认为构造控矿的作用更明显。

5 结论

(1)C-A分形模型分析表明,岷礼成矿带Au和Sn元素具有更高的富集程度,成矿潜力巨大。

(2)因子分析结果表明,区域铜、锌矿化可能部分来自于晚古生代地层,铅—锌、钨—锡矿化与区域晚三叠世大规模的岩浆侵入有关,而寨上金矿受构造控矿的作用更明显。

(3)综合利用C-A分形模型和因子分析方法,预测研究区迭部背斜具有巨大的铅—锌、钨—锡找矿潜力。

http://www.goldsci.ac.cn/article/2021/1005-2518/1005-2518-2021-29-4-489.shtml

参考文献

Afzal PMirzaei MYousefi Mal et2016.

Delineation of geochemical anomalies based on stream sediment data utilizing fractal modeling and staged factor analysis

[J].Journal of African Earth Sciences,119139-149.

[本文引用: 1]

Alipour S MAfzal PHekmatnejad A2020.

Identification of geochemical anomalies using fractal and LOLIMOT neuro-fuzzy modeling in Mial area,central Iran

[J].Journal of Mining and Environment,1199-117.

[本文引用: 1]

Aliyari FAfzal PLotfi Mal et2020.

Delineation of geochemical haloes using the developed zonality index using multivariate and fractal analysis in the Cu-Mo porphyry deposits

[J].Applied Geochemistry,121104694.

[本文引用: 1]

Asadi HKianpouryan SLu Y Jal et2014.

Exploratory data analysis and C-A fractal model applied in mapping multi-element soil anomalies for drilling:A case study from the Sari Gunay epithermal gold deposit,NW Iran

[J].Journal of Geochemical Exploration,145233-241.

[本文引用: 1]

Chen CaihuaSun BingChen Jial et2017.

Prospecting effect of stream sediment survey in Zhongzhai-Shilipu area of west Qinling Mountains

[J].Gold Science and Technology,254):1-9.

Chen YanjingZhang JingZhang Fuxinal et2004.

Carlin and carlin-like gold deposits in western Qinling Mountains and their metallogenic time,tectonic setting and model

[J].Geological Review,502):134-152.

Cheng Q M2007.

Mapping singularities with stream sediment geochemical data for prediction of undiscovered mineral deposits in Gejiu,Yunnan Province,China

[J].Ore Geology Review,32314-324.

[本文引用: 2]

Cheng Q MAgterberg F PBallantyne S B1994.

The separation of geochemical anomalies from background by fractal methods

[J].Journal of Geochemical Exploration,512):109-130.

[本文引用: 5]

Cheng Qiuming2006.

Singularity-generalized self-similarity-fractal spectrum (3S) models

[J].Science Journal of China University of Geosciences,313):337-348.

Deng JWang Q F2016.

Gold mineralization in China:Metallogenic provinces,deposit types and tectonic framework

[J].Gondwana Research,36219-274.

[本文引用: 1]

Dong YunruDong HuaxiangXie Xiangal et2019.

Geochemical anomalies and prospecting prospect analysis of the Dangqinggounao gold-tungsten deposit in Gansu

[J].Northwestern Geology,523):136-142.

Duan YongminZhu YongxinLi Tongguoal et2007.

Discovery and geological significance of Daijiazhuang lead-zinc deposit in Gansu,western Qinling area

[J].Geology and Prospecting,431):44-48.

Feng YiminCao XuanduoZhang Erpengal et2003.

Tectonic evolution framework and nature of the west Qinling orogenic belt

[J].Northwestern Geology,361):1-10.

Fyzollahhi MTorshizian HAfzal Pal et2018.

Determination of lithium prospects using fractal modeling and staged factor analysis in Torud region,NE Iran

[J].Journal of Geochemical Exploration,1892-10.

[本文引用: 1]

Goldfarb G JQiu K FDeng Jal et2019.

Orogenic gold deposits of China

[J].Society of Economic Geologists Special Publications,22263-324.

[本文引用: 1]

Ke ChanghuiWang XiaoxiaYang Yangal et2020.

Petrogenesis of dykes and its relationship to gold mineralization in the western Qinling belt:Constraints from zircon U-Pb age,geochemistry and Nd-Hf-S isotopes of Liba gold deposit

[J].Mineral Deposits,391):42-62.

Ke XianzhongXie ShuyunGao Shunbaoal et2015.

Multifractal distribution patterns of geochemical data and its metallogenic significance:A case study in Bange region,Tibet

[J].Geological Science and Technology Information,341):148-153.

Liu J JDai H ZZhai D Gal et2015.

Geological and geochemical characteristics and formation mechanisms of the Zhai-shang carlin-like type gold deposit,western Qinling Mountains,China

[J].Ore Geology Reviews,64273-298.

[本文引用: 1]

Liu JianhongZhang XinhuZhao Yanqingal et2006.

A study of minerogenetic series of west Qinling region in Gansu Province and its ore-prospecting significance

[J].Mineral Deposits,256):727-734.

Liu KunLiu JiajunWu Jieal et2014.

Fluid inclusion characteristics of the Mawu gold deposit in Gansu Province and their geological significance

[J].Geology in China,415):1594-1607.

Liu Tianhang2017.

Geology,Geochemistry and Metallogenic Regularity of the Suolong Gold Deposit,Gansu Province

[D].Beijing:China University of Geoscience(Beijing).

Xiwang Wang JianzhongZheng Weijunal et2017.

Genesis and prospecting potential of scheelite in the Zhaishang gold deposit,Minxian County,Gansu Province

[J].Northwestern Geology,502):156-166.

Pourgholam M MAfzal PYasrebi A Bal et2020.

Detection of geochemical anomalies using a fractal-wavelet model in Ipack area,central Iran

[J].Journal of Geochemical Exploration,220106675.

[本文引用: 1]

Treiblmaier HFilzmoser P2010.

Exploratory factor analysis revisited:How robust methods support the detection of hidden multivariate data structures in IS research

[J].Information & Management,474):197-207.

[本文引用: 1]

Wang Q FDeng JLiu Hal et2010a.

Fractal models for ore reserve estimation

[J].Ore Geology Reviews,371):2-14.

[本文引用: 1]

Wang Q FDeng JZhao Jal et2010b.

Tonnage-cutoff model and average grade-cutoff model for a single ore deposit

[J].Ore Geology Reviews,381):113-120.

[本文引用: 1]

Xiang ZhonglinGu XuexiangWang Enyingal et2019.

Extraction of synthetic multi-element geochemical anomalies under the multifractal model

[J].Acta Mineralogica Sinica,392):183-191.

Xiao LinHuo QinzhiLiu Binal et2007.

1∶250000 regional geological survey report of Minxian(Hezuo)(I48C002002)

[R].LanzhouGeological Survey Institute of Gansu Province.

Yang LWang Q FLiu Hal et2017.

Identification and mapping of geochemical patterns and their significance for regional metallogeny in the southern Sanjiang,China

[J].Ore Geology Reviews,901042-1053.

[本文引用: 4]

Yang LWang Q FLiu X F2015.

Correlation between mineralization intensity and fluid-rock reaction in the Xinli gold deposit,Jiaodong Peninsula,China:Constraints from petrographic and statistical approaches

[J].Ore Geology Reviews,7129-39.

[本文引用: 1]

Yasrebi A BHezarkhani A2019.

Resources classification using fractal modelling in Eastern Kahang Cu-Mo porphyry deposit,central Iran

[J].Iranian Journal of Earth Sciences,111):56-67.

[本文引用: 1]

Yousefi MKamkar-Rouhani ACarranza E J M2012.

Geochemical mineralization probability index (GMPI):A new approach to generate enhanced stream sediment geochemical evidential map for increasing probability of success in mineral potential mapping

[J].Journal of Geochemical Exploration,11524-35.

[本文引用: 1]

Yousefi MKamkar-Rouhani ACarranza E J M2014.

Application of staged factor analysis and logistic function to create a fuzzy stream sediment geochemical evidence layer for mineral prospectivity mapping

[J].Geochemistry Exploration Environment Analysis,141):45-58.

[本文引用: 1]

Zhang GuoweiZhang BenrenYuan Xuechengal et2001.Qinling Orogenic Belt and Continental Dynamics[M].BeijingScience Press.

陈彩华孙斌陈冀2017.

西秦岭中寨—十里铺地区水系沉积物测量找矿效果

[J].黄金科学技术,254):1-9.

[本文引用: 1]

陈衍景张静张复新2004.

西秦岭地区卡林—类卡林型金矿床及其成矿时间、构造背景和模式

[J].地质论评,502):134-152.

[本文引用: 1]

成秋明2006.

非线性成矿预测理论:多重分形奇异性—广义自相似性—分形谱系模型与方法

[J].地球科学,313):337-348.

[本文引用: 2]

董运如董化祥谢祥2019.

甘肃西秦岭地区当庆沟脑金钨矿床地球化学异常特征及找矿前景

[J].西北地质,523):136-142.

[本文引用: 1]

段永民朱永新李通国2007.

甘肃西秦岭地区代家庄铅锌矿床的发现及意义

[J].地质与勘探,431):44-48.

[本文引用: 1]

冯益民曹宣铎张二朋2003.

西秦岭造山带的演化、构造格局和性质

[J].西北地质,361):1-10.

[本文引用: 2]

柯昌辉王晓霞杨阳2020.

西秦岭地区脉岩成因与金成矿关系——来自李坝金矿年代学、地球化学及Nd-Hf-S同位素的约束

[J].矿床地质,391):42-62.

[本文引用: 1]

柯贤忠谢淑云高顺宝2015.

西藏班戈地区化探数据的多重分形特征及其成矿意义

[J].地质科技情报,341):148-153.

[本文引用: 1]

刘建宏张新虎赵彦庆2006.

西秦岭成矿系列、成矿谱系研究及其找矿意义

[J].矿床地质,256):727-734.

[本文引用: 2]

刘坤刘家军吴杰2014.

甘肃马坞金矿成矿流体特征及地质意义

[J].中国地质,415):1594-1607.

[本文引用: 1]

刘天航2017.

甘肃锁龙金矿床地质地球化学特征及成矿规律

[D].北京:中国地质大学(北京).

[本文引用: 1]

吕喜旺王建中郑卫军2017.

甘肃省岷县寨上金矿床白钨矿成因及找矿潜力

[J].西北地质,502):156-166.

[本文引用: 1]

向中林顾雪祥王恩营2019.

多重分形模式下多元素综合地球化学异常的提取

[J].矿物学报,392):183-191.

[本文引用: 1]

肖林霍勤知刘彬2007.

(合作镇)岷县幅1∶25万区域地质调查报告(I48C002002)

[R].兰州甘肃省地质调查院.

[本文引用: 1]

张国伟张本仁袁学诚2001.秦岭造山带与大陆动力学[M].北京科学出版社.

[本文引用: 1]

/