img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2022, 30(2): 151-164 doi: 10.11872/j.issn.1005-2518.2022.02.139

矿产勘查与资源评价

江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究

许可,1,2, 许德如,1,2,3

1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013

2.东华理工大学地球科学学院,江西 南昌 330013

3.东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013

Study on the Formation Mechanism of Altered Rock Type Gold Mineralization of Huangjindong Gold Deposit in Jiangnan Orogenic Belt

XU Ke,1,2, XU Deru,1,2,3

1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China

2.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China

3.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China

通讯作者: 许德如(1966-),男,湖南岳阳人,教授,从事大地构造学与成矿学研究工作。xuderu@gig.ac.cn

收稿日期: 2021-09-28   修回日期: 2022-01-05  

基金资助: 国家自然科学基金项目“江南造山带万古金矿床成矿流体活动的精细研究”.  42002090
“江南古陆金(多金属)大规模成矿的机理研究”.  41930428

Received: 2021-09-28   Revised: 2022-01-05  

作者简介 About authors

许可(1997-),女,湖南岳阳人,硕士研究生,从事金矿勘查研究工作1318452605@qq.com , E-mail:1318452605@qq.com

摘要

蚀变岩型矿石是热液型金矿床中重要的矿石类型,其形成与水岩反应密切相关。江南造山带黄金洞金矿中的蚀变岩型矿石多发育在褪色化蚀变带中,目前其形成机制尚不清楚。野外勘查、岩相学观察和TIMA分析表明,蚀变带中最主要的特征是广泛发育菱铁矿、绢云母和隐晶质石英。蚀变岩型矿石局部可见较多硫化物,与含金石英脉中的硫化物具有相似的化学成分,说明为同一期流体作用的产物。部分硫化物切穿碳酸盐矿物,说明褪色化蚀变形成于成矿前。TIMA和μ-XRF分析表明,蚀变带发生硅化和绢云母化,且Fe聚集成点状。因此,推测成矿前的水岩反应形成大量菱铁矿斑点,为成矿提供良好的化学圈闭。成矿期含金流体与菱铁矿发生化学反应,通过硫化作用促进金的沉淀,为黄金洞金矿蚀变岩型矿石的成矿机制。

关键词: 热液型金矿 ; 蚀变岩型矿石 ; 褪色化蚀变 ; 菱铁矿 ; 硫化物 ; 成矿机制 ; 江南造山带

Abstract

Quartz (carbonate) vein type and altered rock type ores are the most important ore types in hy-drothermal gold deposits,and the quartz vein type ores are widely studied. However,altered rock type ores are much less well studied due to the complexity of mineral compositions and unavailability for fluid inclusion and geochemical analysis. Compared with quartz veins,altered rock ores generally has a lower grade but larger reserve,which is of great significance for gold exploration. Altered rock ores,closely associated with fluid-rock interactions,represent a typical mineralization style in hydrothermal gold deposits. In the Huangjindong gold deposit of the Jiangnan orogenic belt,South China,altered slate ores are mostly developed in the bleaching alteration zone.Previous research demonstrates that the alteration associated with mineralization mainly include sericitization,silicification,carbonatization and sulfidation,but the gold precipitation mechanism of altered slate ores remains indistinct. Based on field work, and petrographic observations,altered rock type ores in the Huangjindong gold deposit commonly occur in the bleaching alteration zone with a remarkable color transformation from greenish grey to yellow-pale grey.The bleaching alteration zone generally distribute symmetrically along carbonate-quartz veins and mainly characterized by the occurrence of siderite spots,as well as sericites and cryptocrystalline quartzes. Abundant gold-bearing sulfide in altered slates aggregate near carbonate spots,sharing similar geochemical compositions with those in quartz veins viaElectron Probe Microanalysis (EPMA).These sulfides locally crosscut siderite grains,as well as the cementing of partially dissolved siderite grains by quartz,demonstrating that the fading alteration took place before gold mineralization and likely generated by the reaction of CO2-rich fluids with host rocks. Tescan Integrated Mineral Analyzer (TIMA) analysis shows that two alteration zones have been observed in the altered slate,from the proximal to the distal side of the carbonate-quartz vein are silicification and sericitization,respectively. Micro area X-ray Fluorescence Surface Scan (μ-XRF) elemental mapping on carbonate-quartz vein and adjacent alteration zone suggest that most elements have obvious zoning. Mg,Fe and Mn are aggregated into spots in the alteration zones because of the appearance of siderite. Si is abundant in silicification zone,K and Al contents are high in sericitization zone. These results show that large amounts of siderite spots are generated during the pre-mineralization fluid-rock reaction,and thus provide favorable chemical traps for gold mineralization. The chemical reaction between gold-bearing fluid and siderite spot occurs during the ore-forming period,and contributes to gold mineralization by triggering sulfidation,which is the major genesis for the altered slate ores in the Huangjindong gold deposit.

Keywords: hydrothermal gold deposit ; altered rock type ore ; bleaching alteration ; siderite ; sulfide ; metallogenic mechanism ; Jiangnan orogenic belt

PDF (8821KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

许可, 许德如. 江南造山带黄金洞金矿蚀变岩型金矿化形成机制研究[J]. 黄金科学技术, 2022, 30(2): 151-164 doi:10.11872/j.issn.1005-2518.2022.02.139

XU Ke, XU Deru. Study on the Formation Mechanism of Altered Rock Type Gold Mineralization of Huangjindong Gold Deposit in Jiangnan Orogenic Belt[J]. Gold Science and Technology, 2022, 30(2): 151-164 doi:10.11872/j.issn.1005-2518.2022.02.139

石英脉型和蚀变岩型是金矿床中最重要的矿石类型(Phillips et al.,1993Goldfarb et al.,2005),前人研究多数聚焦于石英脉型矿石(Cox et al.,1995Xu et al.,2017),对于蚀变岩型矿石的研究较为薄弱(黄诚等,2014)。蚀变作用主要有硫化、硅化、绢云母化和碳酸盐化(Dugdale et al.,2006),蚀变矿物包括绢云母、菱铁矿、石英、黄铁矿和毒砂等(张婷等,2014)。蚀变岩型矿石是在含矿流体、围岩和构造活动耦合作用下形成的,是金矿化的主要表现形式,如:华南湘中地区古台山、玉横塘金矿(Li et al.,20192021),胶东矿集区焦家式金矿(主要有焦家、新城和三山岛金矿)(Deng et al.,2016Li et al.,2013)。

江南造山带是我国重要的金成矿带之一,蚀变岩型矿石是该成矿带众多金矿床中重要的矿石类型,主要赋存于褪色化蚀变岩中(毛景文等,1997Zhou et al.,2021),如:黄金洞、万古、沃溪和合仁坪矿床(Deng et al.,2017张婷等,2014)。以往研究表明,褪色化蚀变广泛发育在江南造山带金矿床中,是找矿的重要标志之一,蚀变带局部赋存有大量含金硫化物,形成蚀变岩型金矿化。在蚀变过程中元素迁移现象明显,如:Na2O迁入,而SiO2、Fe2O3和K2O迁出(张婷等,2014)。褪色化蚀变类型多种多样,其中与金矿化有关的蚀变主要有绢云母化、硅化、碳酸盐化、黄铁矿化和毒砂化(Liu et al.,2019Xu et al.,2017),二者之间的关系尚不明确,同时蚀变岩型金矿化的成因机制仍不清楚。

鉴于此,本文选取江南造山带中最大的金矿床之一——黄金洞金矿床作为研究对象。黄金洞金矿床同时发育有褪色化蚀变带和大量蚀变岩型金矿石(息朝庄等,2018),是开展褪色蚀变作用和蚀变岩型金矿化成因研究的理想区域。本文在详细岩相学观察的基础上,采用TESCAN综合矿物分析仪(TIMA)、微区X射线荧光光谱分析(μ-XRF)、电子探针(EPMA)和激光剥蚀等离子质谱分析(LA-ICP-MS)等方法,结合前人研究成果,对蚀变岩型矿石的成因及其与褪色化蚀变带之间的关系进行研究,进一步探讨蚀变岩型矿石中金的沉淀机制,为江南造山带金矿的找矿工作提供参考。

1 区域地质背景

1.1 江南造山带区域地质特征

江南造山带位于扬子板块东南缘,是由扬子板块与华夏板块在新元古代碰撞形成的呈反“S”状弧形展布的陆—陆碰撞带(Zhong et al.,2017Gan et al.,2020)。该区产出数百个金(多金属)矿床,金矿资源总量超过970 t(Deng et al.,2020)。江南造山带前寒武纪基底以新元古代变质岩为主,代表性地层为冷家溪群和板溪群,二者均在新元古代—早古生代时期经历浅变质作用(Xu et al.,2007Wang et al.,2016)。从新元古代至中生代晚期,该区受多期构造运动和岩浆活动的影响,形成了一系列NE-NNE向隆起和伸展盆地相间的盆岭构造(Pirajno et al.,2002Wang et al.,2020)。该区岩浆岩主要有新元古代、早古生代、早中生代和晚中生代4期,其中,晚中生代岩浆岩发育最为广泛(Charvet et al.,1996)。

1.2 湘东北区域地质与成矿背景

湘东北地区位于江南造山带中段,地层主要由新元古代冷家溪群、板溪群和未变质的白垩系沉积岩组成(Xu et al.,2007)。冷家溪群自下而上为雷神庙组、黄浒洞组、小木坪组和坪原组,岩性主要为板岩、粉砂质板岩、变质粉砂岩和变质细砂岩。板溪群角度不整合覆盖于冷家溪群之上,包括马底驿组和五强溪组,主要由砾岩、砂岩、凝灰岩和板岩组成(Zhang et al.,20182020)。白垩系可划分为戴家坪组和东塘组,岩性主要为砂岩、砾岩和杂砂岩(Zou et al.,2018)。

该区具有NE向盆岭构造特征,从西向东分别为新宁—灰汤、长沙—平江和醴陵—横洞3条NNE-NE向深大走滑断裂,将早期伸展盆地和花岗岩山岭间隔开(Zhou et al.,2021Wen et al.,2016)。此外,还有3条大致呈EW走向形成于450~430 Ma的韧性剪切带和一系列小规模NWW向断裂(Wen et al.,2016)。

该区岩浆岩主要有新元古代、早古生代和晚中生代3期(Guan et al.,2014)。新元古代S型花岗岩主要包括葛藤岭、大围山和长三背岩体,早古生代Ⅰ型花岗岩以张坊、板杉铺和宏夏桥岩体为代表,晚中生代S型花岗岩在该地区出露最广泛,一般沿NE-SW向区域大断裂分布,如:连云山、金井、望湘和幕阜山岩体(贾大成等,2003Wang et al.,2014)。

湘东北地区NNE-NE向一级断裂附近已发现125个金(多金属)矿床和矿化点,如:黄金洞、万古和雁林寺等矿床。其中,位于区域性NE向长沙—平江断裂两侧的黄金洞和万古金矿(金矿资源总量超过165 t)为代表性金矿床(图1)。矿区发育有褶皱、断裂和剪切带等多种构造,新元古代冷家溪群矿体主要分布在NW-NWW向层间和层内断裂带中。围岩蚀变类型繁多,包括硅化、绢云母化、碳酸盐化、绿泥石化和硫化等(孙思辰等,2018Li et al.,2018)。

图1

图1   湘东北地区区域地质图(据 Deng et al.,2020 修改)

1.第四系;2.白垩纪—古近纪砂岩、砾岩和杂砂岩;3.中泥盆世—中三叠世碳酸盐岩、砂岩和泥岩;4.震旦纪—志留纪砂岩、页岩、砾岩和板岩;5.新元古代板溪群碎屑沉积岩;6.新元古代冷家溪群浅变质浊积岩;7.新太古代—古元古代(?)连云山岩群和涧溪冲岩群角闪岩相—麻粒岩相变质岩;8.燕山期花岗岩;9.印支期花岗岩;10.加里东期花岗岩;11.新元古代花岗岩;12.断层;13.金矿床或矿化点;14.韧性剪切带;15.Cu-Pb-Zn-Au矿床;16.Co矿床; A-汨罗断陷盆地;B-幕阜山—望湘断隆;C-长沙—平江断陷盆地;D-浏阳—衡东断隆;E-醴陵—攸县断陷盆地

Fig.1   Regional geological map of northeastern Hunan Province (modified after Deng et al.,2020


2 矿床地质特征

黄金洞金矿位于湘东北地区长沙—平江断裂东侧,成矿地质条件优越。已探明金储量为80 t,金品位为 4×10-6~10×10-6(平均值为5×10-6),包括阳山庄、金枚和金塘等矿区(图2)(Xu et al.,2017Deng et al.,2020)。新元古代冷家溪群NW-NWW向小木坪组是主要的含矿围岩,根据岩性可划分为2段:第一段为层状钙质板岩,夹有粉砂质板岩、条带状板岩、变质细砂岩和绢云母板岩;第二段为层状砂质板岩,含粉砂质板岩、变质粉砂岩、绢云母板岩、条带状板岩、斑点状板岩、千枚状板岩和变质细粒砂岩,是含金矿脉的主要赋存层位(Deng et al.,2020)。

图2

图2   黄金洞金矿地质图(据 Deng et al.,2020 修改)

1.新元古代小木坪组第二段;2.新元古代小木坪组第一段;3.第四系;4.倒转向斜;5.倒转背斜;6.金矿脉;7.断裂;8.取样位置

Fig.2   Geological map of the Huangjindong gold deposit (modified after Deng et al.,2020


黄金洞金矿床发育有NWW和NE向2组断裂。其中,NWW向断裂与地层产状相近,是主控矿构造。该组断裂可能形成于早古生代,中生代晚期在区域构造应力的作用下重新活化(Zhou et al.,2021肖拥军等,2004)。NE向断裂切割NWW向断裂,如:长平一级断裂和泥湾二级断裂等。此外,还发育有一系列NWW-EW向倒转褶皱,控制着矿体的分布。矿体多向北倾斜,占现有储量50%以上的重要矿脉向南倾斜(Zhang et al.,20182019)。该区未见岩浆岩出露,离矿区最近的侵入体是位于西南方向约12 km处形成于约142 Ma的连云山花岗岩(许德如等,2017)。

根据矿物组成、矿物含量和矿石结构,可将黄金洞金矿床的矿石类型划分为3类,即石英脉型、蚀变岩型和角砾岩型(Zhang et al.,2018Zhou et al.,2021)。其中,石英脉型矿石品位高,蚀变岩型矿石品位较低但其储量规模大(Zhang et al.,2019),角砾岩型矿石受构造活动的影响,主要呈角砾状发育在石英脉中。总体而言,黄金洞金矿矿石矿物主要有黄铁矿、毒砂、金和白钨矿,还有少量闪锌矿、黄铜矿、方铅矿和辉锑矿;脉石矿物主要为石英和方解石,还有少量绢云母、绿泥石和白云母(孙思辰等,2018)。与成矿有关的热液活动可划分为3个阶段:(1)成矿期前的碳酸盐—石英阶段;(2)成矿期的含金毒砂—黄铁矿—石英阶段;(3)成矿期后的石英—碳酸盐阶段。其中,第二阶段是金沉淀的主要时期(Zhang et al.,2018)。

野外和手标本观察可知,黄金洞矿床含金蚀变岩往往赋存于褪色化蚀变带中,蚀变过程中岩石颜色由灰绿色变为浅黄灰色[图3(a)~3(c)]。褪色化蚀变带通常沿早期碳酸盐—石英脉两侧呈对称分布,可见毒砂和黄铁矿颗粒[图3(d)],宽几厘米至几十米甚至数百米(Deng et al.,2020)。褪色化蚀变带和含金蚀变岩皆位于碳酸盐—石英脉的两侧,二者的区别是含金蚀变岩的范围更窄,其本质为金含量达到工业品位的褪色化蚀变岩。

图3

图3   黄金洞金矿矿脉、褪色化蚀变带手标本和显微照片

(a) 与含矿石英脉相邻的褪色化蚀变带;(b) 褪色化蚀变带的颜色变化;(c) 碳酸盐—石英脉两侧对称的褪色化蚀变带;(d) 含金蚀变岩;(e) 黄铁矿切穿菱铁矿;(f) 浸染状黄铁矿位于菱铁矿附近;(g) 溶蚀的菱铁矿边缘局部被石英胶结;(h) 碳酸盐—石英脉由绢云母、方解石、石英、绿泥石和硫化物组成;(i) 碳酸盐—石英脉被含毒砂、黄铁矿的矿脉横切Apy-毒砂;Py-黄铁矿;Sd-菱铁矿;Sph-闪锌矿;Qtz-石英;Cc-方解石;Ser-绢云母

Fig.3   Hand specimens and photomicrograph of the gold veins and fading alteration zone of the Huangjindong gold deposit


镜下研究发现,该褪色化蚀变带最典型的特征是含有大量菱铁矿[图3(e)~3(g)],其形态主要以圆状或椭圆状的斑点产出,大小在50~300 µm之间,局部沿板岩劈理定向生长的菱铁矿表现出微弱的拉长和拖曳现象,呈浸染状构造,半自形,从碳酸盐—石英脉向两侧菱铁矿的数量有逐渐减少的趋势。菱铁矿与黄铁矿等硫化物关系密切,含金硫化物多呈浸染状聚集在菱铁矿周围,而没有菱铁矿的部位硫化物较少[图3(f)]。菱铁矿局部被黄铁矿和闪锌矿等硫化物横切[图3(e)],部分菱铁矿边缘被石英溶蚀[图3(g)]。在碳酸盐—石英脉中,矿物组合主要为石英、绢云母、铁白云石、方解石和白云石,含少量黄铁矿、闪锌矿和绿泥石[图3(h)]。此外,成矿前的碳酸盐—石英脉也被成矿期含毒砂和黄铁矿的石英脉横切[图3(i)]。

3 试验方法和技术

本研究样品主要采自黄金洞矿床ZK803钻孔,钻孔总深度为1 220 m,可见2层矿体。第一层矿体中主要的含矿碳酸盐—石英脉的深度约为-560 m,厚度约为0.8 m。其中,硅化蚀变带与碳酸盐—石英脉两侧紧密相邻,厚度约为0.2 m,两侧为巨厚的褪色化蚀变带,可达200 m,其中有多条细小的碳酸盐—石英脉,褪色化蚀变带中达到工业品位的蚀变岩厚度约为4 m。第二层矿体中含矿碳酸盐—石英脉的深度约为-1 150 m,厚度约为0.3 m。其中,无硅化带发育,碳酸盐—石英脉的两侧发育厚度约为60 m的褪色化蚀变带,达到工业品位的蚀变岩厚度约为2 m。取样位置见图2,将样品全部制成薄片,在岩相学观察的基础上,采用TESCAN综合矿物分析仪(TIMA)、微区X射线荧光光谱分析(μ-XRF)、电子探针(EPMA)和激光剥蚀等离子质谱分析(LA-ICP-MS)等方法进行研究。

3.1 TESCAN综合矿物分析仪(TIMA)

TESCAN综合矿物分析仪可进行高精度矿物组合分析,定量化矿物的面上赋存及粒径分布特征,该试验使用的仪器为广州拓岩分析技术有限公司生产的MIRA3扫描电镜。分析条件如下:加速电压为25 kV,电流为10 nA,工作距离为15 mm,像素大小为3 μm,光斑间距为9 μm。同时,使用自动化程序在铂法拉第杯上校准电流和BSE信号强度,采用锰标准方法检测EDS性能,通过TIMA解离分析模块对样品进行扫描(谢小敏等,2021)。

有些矿物无法被识别的原因可能是:(1)薄片抛光质量不合格;(2)某些矿物的谱峰相当接近,无法被能谱检测器完全分离,从而产生光谱叠加造成干扰。未识别出的矿物中有一半以上粒径小于1 µm。

3.2 微区X射线荧光光谱分析(μ-XRF)

微区X射线荧光光谱分析采用广州拓岩分析技术有限公司生产的M4 Plus微区X射线荧光分析仪,进行高分辨率、原位和无损的多元素空间分布检测。该仪器配有一个直径为20 μm的聚焦毛细管X射线透镜和2个硅漂移探测器。在压强为200 Pa的大气中,单个像素的扫描电压、电流、步长和采集时间分别设置为50 kV、300 μA、20 μm和5 ms。利用M4 tornado软件处理原始数据,对谱峰进行分析,得到不同元素在不同矿物中的平面分布特征(林梵宇等,2021)。

3.3 电子探针(EPMA)和激光剥蚀等离子质谱仪(LA-ICP-MS)分析

电子探针和激光剥蚀等离子质谱仪分析均在东华理工大学核资源与环境国家重点实验室进行。电子探针的试验仪器为JEOL JXA-8120型电子探针。分析条件如下:加速电压为20 kV,电流为15 nA,束斑直径为1~2 μm,峰值计数时间为20 s,背景时间为10 s。激光剥蚀等离子质谱仪分析采用以高能量准分子激光器为基础的NWR193HE智能激光剥蚀系统。分析的主微量元素包括Zn、Cu、Cd、Fe、Mn、S、Ni、Te、As、Ag、Pb、Co、Au、Se、Sb、W、Tl和Bi。

4 分析结果

4.1 TIMA分析结果

选取ZK803钻孔第一层褪色化蚀变带中夹有碳酸盐—石英脉的含金蚀变岩(深度为-572.53 m)进行矿物组合分析,TIMA面扫结果如图4所示,半定量地显示了该样品从碳酸盐—石英脉到褪色化蚀变带的矿物平面分布特征。碳酸盐—石英脉中的主要矿物为铁白云石(63%)和石英(21%),还有少量绢云母(12%)和菱铁矿(3%)。

图4

图4   利用TIMA对碳酸盐—石英脉和褪色化蚀变带进行的矿物鉴定和填图

Fig.4   Mineral identification and mapping of carbonate-quartz vein and bleaching alteration zone used by TIMA


野外和钻孔编录可观察到褪色化蚀变带在石英脉两旁呈对称分布,在此基础上,利用TIMA在该样品中观察到2个蚀变带,碳酸盐—石英脉近端的蚀变带为硅化,远端的蚀变带为绢云母化。近端硅化蚀变带以石英(59%)、钠长石(11%)和菱铁矿(8%)为主,菱铁矿主要赋存于碳酸盐—石英脉与含金蚀变岩的接触部位。远端绢云母化蚀变带由绢云母(65%)、石英(17%)、钠长石(9%)以及少量菱铁矿(4%)和绿泥石—斜绿泥石(2%)组成。等粒径石英—绢云母—钠长石组合为蚀变板岩的基质。

4.2 μ-XRF分析结果

对上述含金蚀变岩样品进行进一步研究,通过微区XRF对碳酸盐—石英脉及其附近的褪色化蚀变带进行面扫描,得出各种元素的含量分布图(图5)。在图5中,颜色越偏红表示元素含量越高,颜色越偏蓝(或黑)表示元素含量越低。大部分元素具有明显的分带性,碳酸盐—石英脉中富集Ca、Mg和Mn元素[图 5(a)~5(c)];硅化蚀变带中Si元素含量最高[图 5(d)],其次为Mg、Na、Al、Ni和Zn元素[图5(b)5(e)~5(h)];绢云母化蚀变带中Si、Al和K元素含量较高[图5(d)5(f)5(i)]。而Ca、Mg、Na、Zn和Cu元素在2条蚀变带中没有明显的分带[图5(a)5(b)5(e)5(h)5(j)],且Mg、Mn和Fe元素聚集呈点状[图 5(b)5(c)5(k)]。

图5

图5   碳酸盐—石英脉和褪色化蚀变带的μ-XRF元素填图

(a)~(k) μ-XRF元素填图;(l) 对应的薄片照片

Fig.5   μ-XRF element mapping of carbonate-quartz vein and bleaching alteration zone


4.3 EPMA和LA-ICP-MS分析结果

对黄金洞矿床含金蚀变岩和成矿期含金石英脉中的含金硫化物(黄铁矿和黄铜矿)进行电子探针(EPMA)和激光剥蚀等离子质谱仪(LA-ICP-MS)分析,探究矿区2种载金硫化物中主微量元素的组成及其变化规律,样品深度在-540~-710 m之间。EPMA分析结果如表1表2所示,仅使用总重量百分比在98%~102%范围内的数据进行分析。含金蚀变岩中黄铁矿Fe和S元素的质量分数平均值分别为46.72%和52.73%,黄铜矿中Cu、Fe和S元素的质量分数平均值分别为34.23%、30.75%和34.20%。含金石英脉中黄铁矿Fe和S元素的质量分数平均值分别为45.58%和52.36%,黄铜矿中Cu、Fe和S元素的质量分数平均值分别为34.96%、29.30%和34.45%。

表1   石英脉中黄铁矿和黄铜矿的电子探针分析结果

Table 1  EPMA analysis results of pyrite and chalcopyrite from quartz vein(%)

序号矿物名称ZnCuCdFeMnSNiTeAsAgPbCoAuSe总计
1黄铁矿-0.53-46.620.1653.141.06--0.03-0.55-0.01102.10
2黄铁矿0.040.610.0346.750.0752.701.10--0.010.060.790.06-102.20
3黄铁矿0.050.07-46.170.0752.810.68-0.01--0.090.05-99.98
4黄铁矿-0.040.0545.960.2952.740.560.03---0.080.060.0299.82
5黄铁矿0.10--46.20-52.550.05--0.030.020.05--99.00
6黄铁矿-0.06-46.360.0152.460.440.030.010.010.030.08-0.0199.49
7黄铁矿0.05-0.0146.52-52.840.460.03-0.030.020.10-0.03100.08
8黄铁矿---46.640.0253.520.250.02-0.020.020.08--100.57
9黄铁矿0.060.090.0246.96-52.720.310.08---0.110.060.04100.44
10黄铁矿0.080.020.0245.82-52.370.550.02-0.030.030.110.070.0199.11
11黄铁矿0.360.09-46.03-52.94---0.010.090.10-0.0599.66
1黄铜矿2.5535.73-29.740.1134.69---0.03-0.050.03-102.94
2黄铜矿3.2834.59-29.290.0634.570.01----0.06-0.04101.89
3黄铜矿2.8835.64-31.790.0534.72-----0.07-0.01105.15
4黄铜矿0.1635.130.0230.78-35.79--0.01--0.050.01-101.94
5黄铜矿0.2335.52-30.780.0134.92--0.03-0.020.04--101.54
6黄铜矿-34.56-31.050.0435.70-0.04-0.020.120.06--101.59
7黄铜矿0.0334.75-30.790.0334.94--0.020.03-0.07-0.01100.69
8黄铜矿0.0634.51-30.68-35.62-0.04-0.010.010.07--101.00
9黄铜矿-34.59-30.020.0133.17---0.030.250.07--98.14
10黄铜矿-35.41-30.71-33.55-0.010.010.030.050.05--99.83
11黄铜矿-35.550.0430.58-33.42-0.05-0.020.260.07--99.98
12黄铜矿0.0235.15-30.37-33.56--0.030.040.220.04--99.41
13黄铜矿0.0935.320.0230.84-33.230.030.070.040.020.190.03--99.87

注:“-”代表低于检测限

新窗口打开| 下载CSV


表2   蚀变围岩中黄铁矿和黄铜矿的EPMA元素值

Table 2  EPMA element values of pyrite and chalcopyrite from altered surrounding rock(%)

序号矿物名称ZnCuCdFeMnSNiTeAsAgPbCoAuSe总计
1黄铁矿-0.02-46.95-52.70--0.13-0.010.09--99.91
2黄铁矿--0.0146.250.0153.020.030.010.08--0.090.08-99.59
3黄铁矿-0.040.0246.09-53.39-0.060.060.01-0.100.05-99.81
4黄铁矿--0.0146.19-53.340.06-0.04--0.110.040.0399.82
5黄铁矿-0.080.0446.41-52.80--0.12--0.05--99.50
6黄铁矿---46.130.0152.900.020.020.05--0.13-0.0199.27
7黄铁矿---46.75-53.030.02-0.140.02-0.080.08-100.11
8黄铁矿0.060.01-45.88-52.760.03----0.060.04-98.83
9黄铁矿0.02-0.0346.66-52.600.020.010.050.020.030.080.010.0199.53
10黄铁矿-0.01-46.780.0152.320.01-0.02--0.02-0.0199.18
11黄铁矿0.010.040.0146.710.0352.47---0.02-0.14--99.44
12黄铁矿-0.01-46.74-52.71-----0.090.010.0299.57
13黄铁矿-0.02-46.47-52.920.010.03--0.070.07-0.0299.60
14黄铁矿--0.0146.41-52.40-0.02---0.09--98.93
15黄铁矿-0.01-46.320.0252.06--0.050.04-0.07-0.0298.59
16黄铁矿---46.460.0152.30-0.010.130.02-0.080.030.0399.05
1黄铜矿0.0836.180.0130.070.1836.09-0.060.04-0.010.05--102.76
2黄铜矿0.0735.900.0129.860.0435.59-0.030.030.04-0.070.010.01101.66
3黄铜矿0.0535.40-30.220.2536.29-----0.08-0.04102.34
4黄铜矿0.1035.30-30.940.2736.280.070.01---0.04--103.01
5黄铜矿0.0236.08-30.510.2335.47---0.01-0.080.020.01102.44
6黄铜矿-35.530.0230.680.2735.27-0.05---0.10--101.91
7黄铜矿0.0435.53-30.830.3134.08---0.01-0.07-0.06100.92
8黄铜矿0.0334.95-30.760.3033.860.04--0.01-0.04--99.99
9黄铜矿0.0234.53-30.830.3333.790.05--0.04-0.03--99.61
10黄铜矿0.0434.13-30.720.2933.75---0.03-0.04--99.00
11黄铜矿0.0334.190.0230.520.4032.960.03--0.02-0.030.02-98.22
12黄铜矿0.0134.66-30.180.3834.69-0.01---0.07-0.02100.02
13黄铜矿0.0135.04-30.460.2734.850.03--0.01-0.04--100.71
14黄铜矿0.0335.02-30.290.3434.62-0.010.02--0.050.03-100.40
15黄铜矿0.0434.69-30.560.3333.80-----0.090.04-99.54
16黄铜矿0.0635.42-30.810.2434.00---0.010.070.05--100.66
17黄铜矿0.0635.850.0230.610.2234.22-----0.05-0.05101.09
18黄铜矿-35.360.0230.690.2633.85-----0.10-0.02100.30
19黄铜矿0.0235.570.0230.730.2134.39-0.040.01--0.030.01-101.03
20黄铜矿-35.140.0130.610.2734.95-----0.06--101.04
21黄铜矿0.0335.36-30.390.2233.84----0.030.040.030.0199.95
22黄铜矿-35.43-30.530.2233.94-----0.01-0.01100.14
23黄铜矿-35.31-30.740.2433.790.040.02-0.01-0.04--100.19
24黄铜矿-35.54-30.840.2334.040.010.02---0.010.03-100.74

注:“-”代表低于检测限

新窗口打开| 下载CSV


5 讨论

5.1 蚀变岩型矿石的地质地球化学特征

世界上许多热液金矿床中均可见蚀变岩型矿石,其往往出现在宽度为几厘米至几十米甚至几百米的褪色化蚀变带中(Bierlein et al.,2000Groves et al.,2003)。蚀变岩型矿石的成因包括但不限于碳酸盐化、绢云母化、硅化、硫化、钠长石化和绿泥石化,均为水—岩反应的产物(Bierlein et al.,2000)。

黄金洞金矿蚀变岩型矿石赋存于褪色化蚀变带中,主要由碳酸盐化、绢云母化和硅化引起(图4)。部分菱铁矿被硫化物横切[图3(e)],且局部被石英溶蚀[图3(f)],推测褪色化蚀变是在矿化之前形成的,可能是富CO2流体与围岩反应的结果。TIMA得出的硅化和绢云母化蚀变带均含有菱铁矿,粒径在10~600 μm之间。从碳酸盐—石英脉的近端到远端,菱铁矿的粒度逐渐减小,含量逐渐减少,说明热液事件的强度逐渐变弱。此外,硫化物颗粒与菱铁矿关系密切[图3(e)3(f)]。根据蚀变类型,可命名该褪色化蚀变带为碳酸盐化—绢云母化—硅化带。

图6表明含金蚀变岩和成矿期含金石英脉中2种硫化物的主量元素(如Fe、S)含量基本相等。LA-ICP-MS分析得出含金石英脉中黄铁矿的Co/Ni比值为0.16~1.36(平均值为0.45),含金蚀变岩中黄铁矿的Co/Ni比值为0.06~2.62(平均值为0.45),即二者黄铁矿Co/Ni比值的变化范围基本吻合,表明含金蚀变岩和含金石英脉中的硫化物可能是同一阶段流体作用的产物(表3表4)。菱铁矿是一种含Fe2+- Mg2+-Mn2+的矿物,根据微区XRF技术得出的元素含量分布图(图5)可知,褪色化蚀变带中,Mg、Mn和Fe元素聚集形成菱铁矿斑点[图5(b)5(c)5(k)]。在菱铁矿处,Cu含量较高[图5(j)],这与菱铁矿附近生成的黄铜矿和黄铁矿等硫化物有关。此外,在碳酸盐—石英脉远端Al和K元素含量高[图5(f)5(i)],这与绢云母化的现象一致。

图6

图6   含金蚀变岩和含金石英脉中黄铁矿和黄铜矿的EPMA和LA-ICP-MS分析结果

Fig.6   EPMA and LA-ICP-MS analysis results of pyrite and chalcopyrite from Au-bearing alteration rock and Au-bearing quartz veins


表3   石英脉中黄铁矿的LA-ICP-MS分析结果

Table 3  LA-ICP-MS analysis results of pyrite from quartz vein(×10-9

序号矿物名称CoNiCuSbWAuTlPbBiCo/Ni
1黄铁矿49.90132.00116.0095.701.3283.500.072 160.0010.200.38
2黄铁矿14.5072.1047.9014.903.5437.40-26.509.160.20
3黄铁矿45.8033.70716.0018.502.5038.200.044 167.008.601.36
4黄铁矿6.6525.1033.3015.003.3928.60-66.4012.300.27
5黄铁矿15.5062.1063.8082.701.0838.500.01112.008.870.25
6黄铁矿57.20136.0064.2017.602.1765.600.053 534.008.300.42
7黄铁矿1.626.3544.4020.103.3932.700.01456.008.900.25
8黄铁矿22.9025.2034.0018.803.5513.900.0327.905.430.91
9黄铁矿2.5615.9060.1023.503.7937.60-60.108.770.16
10黄铁矿6.3218.3077.9018.803.3357.700.02122.0015.200.35

注:“-”代表低于检测限

新窗口打开| 下载CSV


表4   蚀变围岩中黄铁矿的LA-ICP-MS分析结果

Table 4  LA-ICP-MS analysis results of pyrite from altered rock(×10-6

序号矿物名称CoNiCuSbWAuTlPbBiCo/Ni
1黄铁矿5.2537.6013.0020.400.8512.700.0192.207.290.14
2黄铁矿8.1037.00211.00169.008.7817.100.063 854.0010.500.22
3黄铁矿1.7320.7021.7019.603.0517.600.03579.005.010.08
4黄铁矿3.6519.1024.6025.404.3024.000.01118.005.780.19
5黄铁矿3.5915.4019.4015.803.9014.900.08199.003.580.23
6黄铁矿2.7019.5023.2025.102.7917.200.01846.007.220.14
7黄铁矿4.8420.4016.4014.002.3319.400.0187.604.560.24
8黄铁矿41.9016.0011.4011.502.783.580.0149.809.912.62
9黄铁矿2.2339.2096.1068.501.2343.300.04659.0012.600.06
10黄铁矿4.668.3910.005.061.3614.500.01176.002.920.56

新窗口打开| 下载CSV


5.2 蚀变岩型矿石的形成机制

蚀变岩型矿石是一种重要的矿石类型,许多地质学家应用地球化学和热力学模拟来研究金矿床中蚀变岩型矿石的成矿机制(Neall et al.,1987Williams-Jones et al.,2009),并提出几种不同的水岩反应(Phillips et al.,2000)。目前被认可的成矿机制包括硫化、氧化还原反应和温度降低,它们通过破坏含金络合物来促进金矿化(Phillips et al.,2004)。

黄金洞金矿蚀变岩型矿石虽然品位低但储量大(Zhang et al.,2019)。蚀变岩型矿石主要赋存于成矿前形成的褪色化蚀变带中,岩相学分析表明,含金硫化物与成矿前的菱铁矿空间关系密切[图3(e)3(f)3(g)]。因此,推测含金流体与菱铁矿发生化学反应,大幅降低了流体中S含量,从而沉淀了黄铁矿和黄铜矿等含金硫化物。该化学反应破坏了含金络合物的稳定性,导致金的沉淀,与硫化作用的原理一致。褪色化蚀变为该反应提供了化学保障,对江南造山带大规模金矿成矿起到了重要作用。

6 结论

(1)黄金洞金矿床蚀变岩型矿石主要赋存于含菱铁矿的褪色化蚀变带中,褪色化主要由碳酸盐化、绢云母化和硅化引起,沿成矿前引起褪色化的碳酸盐—石英脉对称分布,颜色由绿灰色转变为浅黄—灰色。蚀变具有分带性,从碳酸盐—石英脉的近端到远端分别为硅化和绢云母化。

(2)菱铁矿中Mg、Fe和Mn元素聚集呈点状。部分菱铁矿被含金硫化物横切,局部被石英溶蚀,表明褪色化蚀变发生在矿化前,可能是富CO2流体与围岩反应的结果。

(3)菱铁矿与含金流体发生化学反应,大幅降低了流体中S含量,从而沉淀黄铁矿和黄铜矿等含金硫化物。菱铁矿为金矿化提供了理想的化学圈闭,通过硫化作用沉淀金。

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-2-151.shtml

参考文献

Bierlein F PArne DMcKnight Set al2000.

Wall-rock petrology and geochemistry in alteration halos associated with mesothermal gold mineralization,central Victoria,Australia

[J].Economic Geology,95283-311.

[本文引用: 2]

Charvet JShu LShi Yet al1996.

The building of south China:Collision of Yangzi and Cathaysia blocks,problems and tentative answers

[J].Journal of Southeast Asian Earth Sciences,13223-235.

[本文引用: 1]

Cox S FSun S SEtheridge M Aet al1995.

Structural and geochemical controls on the development of turbidite-hosted gold quartz vein deposits,Wattle Gully mine,central Victoria,Australia

[J].Economic Geology,901722-1746.

[本文引用: 1]

Deng JWang Q F2016.

Gold mineralization in China:Metallogenic provinces, deposit types and tectonic framework

[J]. Gondwana Research,36219-274.

[本文引用: 1]

Deng TXu DChi Get al2017.

Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China

[J].Ore Geology Reviews,88619-637.

[本文引用: 1]

Deng TXu DChi Get al2020.

Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China

[J].Ore Geology Reviews,124103586.

[本文引用: 8]

Deng Teng2018.

Introcontinental Tectonic-magmatic Reactivation and Its Control Over Gold Mineralization in Northeastern Hunan Province,South China

[D]. GuangzhouGuangzhou Institute of Geochemistry,Chinese Academy of Sciences.

Dugdale A LWilson C J LSquire R J2006.

Hydrothermal alteration at the Magdala gold deposit,Stawell,western Victoria

[J]. Australian Journal of Earth Sciences: An International Geoscience Journal of the Geological Society of Australia,535):733-757.

[本文引用: 1]

Gan CWang YBarry T Let al2020.

Late Jurassic high-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen,South China

[J]. Gondwana Research,77260-273.

[本文引用: 1]

Goldfarb R JBaker TDube Bet al2005.

Distribution, character and genesis of gold deposits in metamorphic terranes

[C]//Hedenquist J W,Thompson J F H,Goldfarb R J,et al.Economic Geology 100th Anniversary Volume.LittletonSociety of Economic Geologists: 407-450.

[本文引用: 1]

Groves D IGoldfarb R JRobert Fet al2003.

Gold deposits in metamorphic belts:Overview of current understanding,outstanding problems,future research,and exploration significance

[J].Economic Geology,981-29.

[本文引用: 1]

Guan YYuan CSun Met al2014.

I-type granitoids in the eastern Yangtze Block:Implications for the Early Paleozoic intracontinental orogeny in South China

[J].Lithos,206/20734-51.

[本文引用: 1]

Huang ChengZhang DehuiHe Chengzhonget al2014.

The wall-rock alteration of the hydrothermal gold deposit and its relationship with gold mineralization

[J].Geophysical and Geochemical Exploration,382):278-283288.

Jia DachengHu RuizhongZhao Junhonget al2003.

Litho geochemical characteristics of the Mesozoic granitic intrusion from the Wangxiang area in northeastern Hunan Province and its tectonic setting

[J].Acta Geologica Sinica,(1):98-103.

Li HWu Q HEvans N Jet al2018.

Geochemistry and geochronology of the Banxi Sb deposit:Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan,South China

[J].Gondwana Research,55112-134.

[本文引用: 1]

Li WCook N JXie G Qet al2019.

Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au-Sb deposit, South China

[J]. Mineralium Deposita,544):591-610.

[本文引用: 1]

Li WCook N JXie G Qet al2021.

Complementary textural, trace element, and isotopic analyses of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au deposit,South China

[J].Economic Geology,1168):1825-1848.

[本文引用: 1]

Li X CFan H RSantosh Met al2013.

Hydrothermal alteration associated with Mesozoic granite-hosted gold mineralization at the Sanshandao deposit,Jiaodong gold province,China

[J]. Ore Geology Reviews,53403-421.

[本文引用: 1]

Lin FanyuYin XijieHuang Weiet al2021.

Application of micro-XRF technology to rapid and nondestructive detection of inorganic elements in ocean minerals

[J].Marine Geology and Quaternary Geology,411):223-232.

Liu QShao YChen Met al2019.

Insights into the genesis of orogenic gold deposits from the Zhengchong gold field,northeastern Hunan Province,China

[J].Ore Geology Reviews,105337-355.

[本文引用: 1]

Mao JingwenLi Hongyan1997.

Research on genesis of the gold deposits in the Jiangnan terrain

[J].Geochimica,(5):71-81.

Neall F BPhillips G N1987.

Fluid-wall rock interaction in an Archean hydrothermal gold deposit:A thermodynamic model for the Hunt mine,Kambalda

[J].Economic Geology,821679-1694.

[本文引用: 1]

Phillips G NEvans K A2004.

Role of CO2 in the formation of gold deposits

[J].Nature,429860-863.

[本文引用: 1]

Phillips G NLaw J2000.

Witwatersrand goldfields:Geology,genesis and exploration

[J].Society for Economic Geologists Review,13439-500.

[本文引用: 1]

Phillips G NPowell R1993.

Link between gold provinces

[J]. Economic Geology,881084-1098.

[本文引用: 1]

Pirajno FBagas L2002.

Gold and silver metallogeny of the South China Fold Belt:A consequence of multiple mineralizing events

[J].Ore Geology Reviews,20109-126.

[本文引用: 1]

Sun SichenZhang LiangWu Shengganget al2018.

Metallogenic mechanism of the Huangjindong gold deposit,Jiangnan Orogenic Belt:Constraints from mineral formation environment and physicochemical conditions of metallogenesis

[J].Acta Petrologica Sinica,345):1469-1483.

Wang CShao YEvans N Jet al2020.

Genesis of Zixi gold deposit in Xuefengshan,Jiangnan Orogen (South China):Age,geology and isotopic constraints

[J].Ore Geology Reviews,117103301.

[本文引用: 1]

Wang J QShu L SSantosh M2016.

Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen

[J].Gondwana Research,39114-130.

[本文引用: 1]

Wang L XMa C QZhang Cet al2014.

Genesis of leucogranite by prolonged fractional crystallization:A case study of the Mufushan complex,South China

[J].Lithos,206/207147-163.

[本文引用: 1]

Wen ZDeng TDong Get al2016.

Study on the characters and rules of the ore-controlling structures of the Wangu gold deposit in northeastern Hunan Province

[J].Geotectonica et Metallogenia,40281-294.

[本文引用: 2]

Williams-Jones A EBowell R JMigdisov A A2009.

Gold in solution

[J].Elements,5281-287.

[本文引用: 1]

Xi ChaozhuangYang TaoXia Haodonget al2018.

Characteristics of trace elements and REE in Huangjindong gold deposit in northeastern Hunan and their geological significance

[J].Gold,392):17-21.

Xiao YongjunChen Guanghao2004.

Preliminary study on the tectono metallogenic orientation mechanism of the Dadong-Wangu gold deposit zone,northeastern Hunan Province

[J].Geotectonica et Metallogenia,(1):38-44.

Xie XiaominLi LiYuan Qiuyunet al2021.

Grain size distribution of organic matter and pyrite in Alum shales characterized by TIMA and its Paleo environmental significance

[J].Rock and Mineral Analysis,401):50-60.

Xu DChi GZhang Yet al2017.

Yanshanian (Late Mesozoic) ore deposits in China—An introduction to the Special Issue

[J].Ore Geology Reviews,88481-490.

[本文引用: 3]

Xu DDeng TChi Get al2017.

Gold mineralization in the Jiangnan orogenic belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting

[J].Ore Geology Reviews,88565-618.

Xu DGu XLi Pet al2007.

Mesoproterozoic—Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China

[J].Journal of Asian Earth Sciences,29637-650.

[本文引用: 2]

Xu DeruDeng TengDong Guojunet al2017.

Zircon U-Pb geochronological and geochemical characteristics of the Lianyunshan two-mica monzogranites in northeastern Hunan Province:Implications for petrogenesis and tectonic setting associated with polymetallic mineralization

[J].Ear-th Science Frontiers,242):104-122.

Zhang LGroves D IYang L Qet al2020.

Utilization of preexi-sting competent and barren quartz veins as hosts to later oroge-nic gold ores at Huangjindong gold deposit,Jiangnan Orogen,southern China

[J].Mineralium Deposita,55363-380.

[本文引用: 1]

Zhang LYang L QGroves D Iet al2018.

Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China

[J].Ore Geology Reviews,99264-281.

[本文引用: 4]

Zhang LYang L QWeinberg R Fet al2019.

Anatomy of a world-class epizonal orogenic-gold system:A holistic thermochronological analysis of the Xincheng gold deposit,Jiaodong Peninsula,eastern China

[J].Gondwana Research,7050-70.

[本文引用: 3]

Zhang TingPeng Jiantang2014.

Wall-rock alteration and mass balance of Herenping albite-quartz vein-type gold deposit in the western Hunan

[J].Journal of Earth Sciences and Environment,364):32-44.

Zhong JPirajno FChen Y J2017.

Epithermal deposits in South China:Geology,geochemistry,geochronology and tectonic setting

[J].Gondwana Research,42193-219.

[本文引用: 1]

Zhou YXu DDong Get al2021.

The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China

[J].Journal of Structural Geology,145104306.

[本文引用: 4]

Zou SZou FNing Jet al2018.

A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting

[J].Ore Geology Reviews,9242-60.

[本文引用: 1]

邓腾2018.

湘东北地区陆内构造—岩浆活化及其对金成矿作用的控制

[D].广州中国科学院广州地球化学研究所.

黄诚张德会和成忠2014.

热液金矿床围岩蚀变特征及其与金矿化的关系

[J].物探与化探,382):278-283288.

[本文引用: 1]

贾大成胡瑞忠赵军红2003.

湘东北中生代望湘花岗岩体岩石地球化学特征及其构造环境

[J].地质学报, (1):98-103.

[本文引用: 1]

林梵宇尹希杰黄威2021.

利用微区XRF技术的大洋固体矿产成分快速无损检测

[J].海洋地质与第四纪地质,411):223-232.

[本文引用: 1]

毛景文李红艳1997.

江南古陆某些金矿床成因讨论

[J].地球化学,(5):71-81.

[本文引用: 1]

孙思辰张良吴圣刚2018.

江南造山带黄金洞金矿床成矿机制:矿物形成环境与金成矿物理化学条件制约

[J].岩石学报,345):1469-1483.

[本文引用: 2]

息朝庄杨涛夏浩东2018.

湘东北黄金洞金矿床微量元素、稀土元素特征及其地质意义

[J].黄金,392):17-21.

[本文引用: 1]

肖拥军陈广浩2004.

湘东北大洞—万古地区金矿构造成矿定位机制的初步研究

[J].大地构造与成矿学,(1):38-44.

[本文引用: 1]

谢小敏李利袁秋云2021.

应用TIMA分析技术研究Alum页岩有机质和黄铁矿粒度分布及沉积环境特征

[J].岩矿测试,401):50-60.

[本文引用: 1]

许德如邓腾董国军2017.

湘东北连云山二云母二长花岗岩的年代学和地球化学特征:对岩浆成因和成矿地球动力学背景的启示

[J].地学前缘,242):104-122.

[本文引用: 1]

张婷彭建堂2014.

湘西合仁坪钠长石—石英脉型金矿床围岩蚀变及质量平衡

[J].地球科学与环境学报,364):32-44.

[本文引用: 3]

/