基于NPCA-GA-BP神经网络的采场稳定性预测方法
|
谢饶青,陈建宏,肖文丰
|
Prediction Method of Stope Stability Based on NPCA-GA-BP Neural Network
|
Raoqing XIE,Jianhong CHEN,Wenfeng XIAO
|
|
表5 非线性降维后的样本数据
|
Table 5 Sample data after nonlinear dimension reduction
|
|
样本编号 | Y1 | Y2 | Y3 | Y4 | 采场稳定性 | 样本编号 | Y1 | Y2 | Y3 | Y4 | 采场稳定性 |
---|
1 | 1.496 | 1.405 | 2.218 | -1.604 | 2 | 18 | 0.799 | 1.615 | 2.225 | -1.784 | 2 | 2 | 1.637 | 1.375 | 2.181 | -1.551 | 3 | 19 | 1.682 | 1.335 | 2.397 | -1.695 | 2 | 3 | 1.592 | 1.508 | 2.235 | -1.579 | 3 | 20 | 1.642 | 1.456 | 2.341 | -1.658 | 3 | 4 | 1.795 | 1.397 | 2.103 | -1.569 | 2 | 21 | 1.516 | 0.720 | 1.950 | -1.733 | 4 | 5 | 1.750 | 1.415 | 2.249 | -1.527 | 2 | 22 | 1.773 | 1.297 | 2.197 | -1.681 | 2 | 6 | 1.116 | 0.983 | 2.093 | -1.589 | 4 | 23 | 1.863 | 1.312 | 2.094 | -1.704 | 2 | 7 | 1.667 | 1.136 | 2.186 | -1.496 | 4 | 24 | 1.343 | 1.449 | 2.202 | -1.534 | 2 | 8 | 1.651 | 1.499 | 2.209 | -1.579 | 3 | 25 | 1.590 | 1.411 | 2.295 | -1.946 | 2 | 9 | 2.000 | 1.386 | 2.362 | -1.915 | 2 | 26 | 1.214 | 1.590 | 2.220 | -1.563 | 2 | 10 | 1.720 | 1.455 | 2.231 | -1.623 | 2 | 27 | 1.783 | 1.260 | 2.049 | -1.488 | 2 | 11 | 1.485 | 1.012 | 2.148 | -1.949 | 4 | 28 | 1.751 | 1.218 | 2.456 | -1.632 | 1 | 12 | 1.385 | 1.321 | 2.358 | -1.818 | 2 | 29 | 1.510 | 1.351 | 2.606 | -1.691 | 1 | 13 | 1.620 | 1.279 | 2.035 | -1.729 | 3 | 30 | 1.649 | 1.098 | 2.323 | -1.695 | 2 | 14 | 1.568 | 0.868 | 2.863 | -1.517 | 1 | 31 | 1.496 | 1.373 | 2.308 | -1.494 | 3 | 15 | 1.671 | 1.376 | 2.118 | -1.658 | 3 | 32 | 1.739 | 1.297 | 2.233 | -1.450 | 2 | 16 | 1.861 | 1.450 | 2.306 | -1.711 | 3 | 33 | 0.933 | 1.136 | 2.291 | -1.557 | 4 | 17 | 1.391 | 1.616 | 2.354 | -1.718 | 2 | | | | | | |
|
|
|