img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2022, 30(5): 676-690 doi: 10.11872/j.issn.1005-2518.2022.05.188

矿产勘查与资源评价

湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示

万泰安,1,2, 许德如,1,2,3, 马文1,2, 张胜伟1,2, 王国建1,2, 卞玉冰1,2, 李博1,2

1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013

2.东华理工大学地球科学学院,江西 南昌 330013

3.东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013

Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold Deposit,Northeast Hunan and Its Implication to Gold Mineralization Mechanism

WAN Tai’an,1,2, XU Deru,1,2,3, MA Wen1,2, ZHANG Shengwei1,2, WANG Guojian1,2, BIAN Yubing1,2, LI Bo1,2

1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China

2.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China

3.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China

通讯作者: 许德如(1966-),男,湖南岳阳人,教授,从事大地构造学与成矿学研究工作。xuderu@gig.ac.cn

收稿日期: 2021-11-30   修回日期: 2022-01-20  

基金资助: 国家自然科学基金项目“江南造山带万古金矿床成矿流体活动的精细研究”.  42002090
“江南古陆金(多金属)大规模成矿的机理研究”.  41930428

Received: 2021-11-30   Revised: 2022-01-20  

作者简介 About authors

万泰安(1992-),男,江西泰和人,硕士研究生,从事金矿勘查研究工作wantaian@foxmail.com , E-mail:wantaian@foxmail.com

摘要

万古金矿是江南造山带中金(多金属)成矿带的代表性矿床,目前对该矿床硫化物中的元素特征和金的富集机制研究相对较少。为了进一步探讨万古金矿中硫化物的微量元素特征,依据黄铁矿晶型及其他共生矿物特征,将其中的黄铁矿划分为3期(Py1、Py2和Py3),并对3期黄铁矿分别进行LA-ICP-MS分析。研究表明:Py1平行于地层层理,为不含金的原生黄铁矿;Py2与菱铁矿共生,是富CO2流体与围岩发生水岩反应所致,且对Py1具有继承性;Py3与烟灰色石英和毒砂共生,金含量较高。Py2表面孔隙发育,表明该期黄铁矿通过溶解—沉淀形成Py3。富金的Py3存在Au-As耦合现象,Au浓度明显低于金饱和曲线,推测Au以Au1+的形式赋于黄铁矿的晶格中。结合以往研究,推断硫化作用是万古金矿主要的金沉淀机制,富含Py2与菱铁矿的围岩是金沉淀理想的化学圈闭。

关键词: 黄铁矿 ; 江南造山带 ; 万古金矿 ; Au-As耦合 ; LA-ICP-MS ; Mapping

Abstract

The Wangu gold deposit is one of the most important parts of the gold (polymetallic) metallogenic belt in the Jiangnan orogenic belt,in which the mineral element composition characteristics of sulfide has relatively few research on the enrichment mechanism of Au.For further exploration of the element composition characteristics of sulfide in Wangu gold deposit,85 representative samples were selected and made into thin sections.The ore mineral pyrite and arsenipyrite in the deposit was taken as the research object,and the basic characteristics of mineral assemblage and mineral structure were observed under the microscope.According to the characteristics of pyrite crystal form and other symbiotic minerals,the pyrite in Wangu gold mine is divided into three stages:Py1,Py2 and Py3.Laser ablation plasma mass spectrometry (LA-ICP-MS) and mapping was used to analyze the trace element composition in these three stages.There are obvious differences in Au con-centrations in Py1,Py2 and Py3 of pyrite in Wangu gold deposit.Au elements mainly exists in Py3 in the metallogenic stage,while Au concentration in Py2 is low.At the same time,As elements in Py3 also appear in the position corresponding to the enrichment of Au elements.There is a coupling relationship between Au and As in pyrite of Wangu gold deposit.Therefore,speculation is made that Au mainly migrates in the form of Au-HS in the fluid and is mainly assigned to the lattice of pyrite in the form of Au1+.In this process,As is likely to replace S with As1- and form Fe(As,S)2 solid solution between pyrite and arsenopyrite,which is arsenic containing pyrite.Combined with the previous study,the result is that Py1 does not contain gold and is primary pyrite,and Py2 exists symbiotically with siderite.It is considered that siderite was formed before mineralization and was caused by water-rock reaction between Caledonian CO2 rich fluid and surrounding rock.Therefore,Py2 has a certain inheritance to Py1.As the main gold mineralizeation stage of Caledonian period,Py3 exists with smoky gray quartz and arsenipyrite,and has a high percentage of sulfide in gold.The growth of pores on the surface of Py2 is the typical dissolution reprecipitation feature,indicating that pyrite in this period was dissolved by later fluid and reprecipitation into Py3.In this process,the Yanshanian gold bearing fluid reacts with early Py2,which destroys the stability of Au-HS complex in the fluid and forms gold bearing Py3 through pyrite dissolution and reprecipitation.Combined with previous studies,it is considered that sulfidation is the main gold precipitation mechanism of Wangu gold deposit,and early Py2 and siderite can also provide ideal chemical traps for gold precipitation.

Keywords: pyrite ; Jiangnan orogenic belt ; Wangu gold deposit ; Au-As coupling ; LA-ICP-MS ; Mapping

PDF (10402KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

万泰安, 许德如, 马文, 张胜伟, 王国建, 卞玉冰, 李博. 湘东北万古金矿床不同期次黄铁矿微量元素特征及其对金成矿机制的启示[J]. 黄金科学技术, 2022, 30(5): 676-690 doi:10.11872/j.issn.1005-2518.2022.05.188

WAN Tai’an, XU Deru, MA Wen, ZHANG Shengwei, WANG Guojian, BIAN Yubing, LI Bo. Trace Element Characteristics of Different Chronology Pyrite in Wangu Gold Deposit,Northeast Hunan and Its Implication to Gold Mineralization Mechanism[J]. Gold Science and Technology, 2022, 30(5): 676-690 doi:10.11872/j.issn.1005-2518.2022.05.188

金在地壳中的丰度为1.3×10-9,在上地壳中的平均含量为1.5×10-9Rudnick et al.,1968),形成具有工业品位的金矿石需要几百至几千倍的富集,而多期热液叠加成矿更容易形成储量大且品位高的金矿床(Meffre et al.,2016Xu et al.,2017b;Harol-dson et al.,2018;Liu et al.,2019)。此外,金矿床通常位于区域性深大断裂附近,易受深大断裂多期活动及伴随的岩浆、热液作用的影响(Groves et al.,1998Cline et al.,2005Frimmel et al.,2005)。因此,全球许多金矿床、金成矿区带的形成与多期热液活动的关系非常密切(Meffre et al.,2016)。

以往研究表明,金成矿作用中多期热液活动不仅表现在矿床地质特征(如围岩蚀变和含矿构造等)和成矿流体的差异上,而且表现在金的富集方式和流体与先存矿物微量元素的活化上(Deng et al.,2020Zhang et al.,2020Zhou et al.,2021Ma et al.,2021)。因此,深入理解矿物尺度上不同流体与矿物之间的微量元素化学行为,对于理解金的沉淀和分布规律有着重要的作用(Reich et al.,2005Cook et al.,20092013Li et al.,2021)。

江南造山带位于扬子板块东南缘,是我国重要的金(多金属)成矿带,素有“江南金腰带”的美誉(毛景文等,1997许德如等,2015),其中最著名的矿床为江西的金山金矿和湖南的万古金矿、黄金洞金矿和沃溪金—锑—钨矿,合计金储量约为970 t(Xu et al.,2017b)。这些金矿床受多期构造控制,主要分布在NE或近EW向的深大断裂附近,周围通常发育有燕山期花岗岩,而矿体则位于NWW向断裂和倒转褶皱中(许德如等,2015)。前人关于地质年代学、构造地质学和地球化学的研究表明,金矿化主要与加里东期和燕山期热液活动有关(张婷等,2014文志林等,2016Xu et al.,2017bDeng et al.,20172020Zhou et al.,2021)。然而,由于这些金矿床受到后期热液事件的扰动,加上直接对各期含金硫化物的分类研究较少,因此,对于这2期热液事件与金矿化的关系仍存在较大争议。

因此,本文选取江南造山带中最大的金矿床之一——万古金矿床作为研究对象。在详细野外地质调查和岩相学分析的基础上,采用原位LA-ICP-MS微区扫面和点分析,结合前人研究成果,探讨万古金矿不同期次热液活动下硫化物的结构和微量元素特征,为江南造山带金矿找矿勘查提供理论依据。

1 区域地质概况

湘东北地区是我国华南地区极为重要的金(多金属)矿集区,大地构造位置处于扬子板块东南缘的江南造山带中段,是新元古代时期扬子板块与华夏板块碰撞结合的产物(Xu et al.,2017b)。显生宙以来,受新元古代扬子板块与华夏板块碰撞的影响(Xu et al.,2017b),形成以NE向断层和褶皱为主,3条近EW向韧性剪切带近平行分布,NW向构造次之的构造格架,NE-NNE向断层将湘东北地区分隔成“盆—岭”相间的构造格局。

区内经历了加里东期、印支期和燕山期3次大规模构造—岩浆活动(舒良树,2012)。其中燕山期构造演化主要受古太平洋板块俯冲和回撤作用的影响,导致了江南造山带大规模的构造—岩浆活动(Zhou et al.,2006Li et al.,2007Xu et al.,2017b),在盖层上留下了一系列NE向伸展型盆岭构造、NE-NNE向深大断裂和花岗岩构造形迹(舒良树等,2006Deng et al.,2017Xu et al.,2017b),与研究区内金多金属矿床的形成密切相关。多期次的构造活动伴随着大规模的岩浆侵入事件,主要发育新元古代晋宁期、加里东期、印支期和燕山期岩浆岩体(图1),其中以燕山期花岗岩分布最为广泛。区内地层由老到新出露有新元古代浅变质火山—碎屑岩系的雷神庙组、黄浒洞组、小木坪组和坪原组,盖层以白垩纪红层为主,出露少量的古生代和新生代沉积岩,不整合覆盖在新元古代变质基底之上(符巩固等,2002许德如等,2015)。

图1

图1   湘东北地区区域地质图(据Deng et al.,2020修改)

1.第四系;2.白垩—古近纪砂岩、砾岩和杂砂岩;3.中泥盆—中三叠世碳酸盐岩、砂岩和泥岩;4.震旦—志留纪砂岩、页岩、砾岩和板岩;5.新元古代板溪群碎屑沉积岩;6.新元古代冷家溪群浅变质浊积岩;7.新太古代—古元古代(?)连云山岩群和涧溪冲岩群角闪岩相—麻粒岩相变质岩;8.燕山期花岗岩;9.印支期花岗岩;10.加里东期花岗岩;11.新元古代花岗岩;12.断层;13.金矿床或矿化点;14.韧性剪切带;15.Co矿床;16.Cu-Pb-Zn-Au矿床;A-汨罗断陷盆地;B-幕阜山—望湘断隆;C-长沙—平江断陷盆地;D-连云山—衡阳断隆;E-醴陵—攸县断陷盆地

Fig.1   Regional geological map of northeastern Hunan Province(modified after Deng et al.,2020


该区已探明金矿床和矿化点约125个,其中以万古、黄金洞和雁林寺金矿为代表。这些矿床沿着NNE-NE走向的断裂分布(Xu et al.,2017a)。其中,最具代表性的万古和黄金洞金矿分别位于NE向长沙—平江断裂的北西和南东侧(图1)(Deng et al.,20172020Liu et al.,2019Zhang et al.,20172020)。矿体多赋存于新元古代冷家溪群中,受NW-NWW向层间破碎带的控制,矿体两侧发育大规模的褪色化蚀变(Ma et al.,2021)。主要矿化类型为石英脉型、蚀变岩型和构造角砾岩型(Zhang et al.,2020Zhou et al.,2021)。矿石矿物以毒砂和黄铁矿为主,见少量的辉锑矿、方铅矿、闪锌矿和黄铜矿,脉石矿物主要为石英和方解石。前人研究表明,该区金矿床中有加里东期和燕山期2期热液活动,其中金成矿作用主要形成于燕山期(Deng et al.,20172020;Zhou et al.,2020)。

2 矿床地质特征

万古金矿床位于NE向长沙—平江断裂的北西侧(图1)(Deng et al.,2020Xu et al.,2017aZhou et al.,2021)。矿区主要出露地层有新元古代冷家溪群和白垩纪红层(图2),发育NWW向韧—脆性变形,其产状与地层层理产状相似,以中低角度(60°~19°)向NNE向倾入。矿体赋存在新元古代浅变质地层内的NNW向层间破碎带之中(毛景文等,1997Xu et al.,2017b),并被NE向断层横切(图3)(毛景文等,1997肖拥军等,2004文志林等,2016)。Zhou et al.(2021)以构造活化为理论指导,通过详细的野外调查和室内研究,将万古金矿的构造期次划分为5个阶段(D1~D5)。在湘东北地区最早的构造变形期(D1)(王建,2010柏道远等,2012),NW-SE向的区域挤压应力(Cawood et al.,2018)形成于扬子板块与华夏板块在新元古代(820~800 Ma)的碰撞时期(Zhou et al.,2021)。E-W至SEE-NWW走向断裂带最初形成于早古生代造山运动(D2)期间,并在早三叠世(D3)和晚侏罗—早白垩世(D4)构造事件期间重新活化。金矿化发生于早白垩世E-W至SEE-NWW断裂的活化期间,与古太平洋板块从板块俯冲(D4)到板块回旋(D5)的过渡有关(Zhou et al.,2021)。受EW-NWW向层间破碎带控制,矿体多呈脉状、似层状或长透镜体状充填在构造破碎带中(图4)。矿体两侧发育大规模的褪色化蚀变,主要为成矿前的菱铁矿化和绢云母化所致(Ma et al.,2021)。矿石矿物主要为毒砂和黄铁矿,还有少量黄铜矿、闪锌矿、方铅矿、辉锑矿和白钨矿。脉石矿物以石英和方解石为主,见有少量的绢云母(毛景文等,1997)。万古金矿的矿石类型以石英脉型、蚀变岩型和构造角砾岩型为主[图5(a)~5(c)]。

图2

图2   湘东北地区地质图(据毛景文等,1997修改)

1.全新统;2.更新统;3.白垩纪戴家坪组;4.白垩纪东塘组;5.新元古代坪原组;6.新元古代黄浒洞组;7.新元古代小木坪组;8.燕山期花岗岩;9.金矿体和金矿化点;10.河流;11.取样点;12.断层

Fig.2   Geological map of northeastern Hunan Province(modified after Mao et al.,1997


图3

图3   万古金矿地质图(据毛景文等,1997修改)

1.第四系;2.白垩纪戴家坪组;3.新元古代坪原组第三段第二岩性亚段;4.新元古代坪原组第三段第一岩性亚段;5.新元古代坪原组第二段第二岩性亚段;6.新元古代坪原组第二段第一岩性亚段;7.新元古代坪原组第一段;8.矿体及编号;9.断裂及编号

Fig.3   Geological map of the Wangu gold deposit(modified after Mao et al.,1997


图4

图4   万古金矿矿区剖面图(据毛景文等,1997修改)

1.新元古代坪原组第二段第二岩性亚段;2.新元古代坪原组第二段第一岩性亚段;3.含金石英脉;4.金品位/厚度;5.层内断裂带;6.钻孔;7.产状

Fig.4   Cross section diagram of the Wangu gold deposit(modified after Mao et al.,1997


图5

图5   万古金矿不同岩石类型野外记录、手标本及黄铁矿镜下特征(反射光g、h、j,背散射图像i)

(a)石英脉型矿石,蚀变板岩与石英脉互层;(b)蚀变岩型矿石,石英穿插其中;(c)角砾岩型矿石,石英呈浸染状;(d)石英脉型矿石中可见石英、方解石、毒砂和黄铁矿(Py3);(e)碳质板岩中含有黄铁矿(Py1),出现褪色化蚀变;(f)蚀变板岩被石英穿插,蚀变板岩中可见毒砂和黄铁矿(Py3);(g)黄铁矿(Py2)呈他形,与菱铁矿共生;(h)黄铁矿中的Py1和Py2阶段,呈自形—半自形,Py1为核部表面光滑,Py2为幔部呈多孔结构;(i)BES图像下与黄铁矿Py3共生的毒砂,环带发育较好,未见多期次的毒砂;(j)黄铁矿中的Py2和Py3阶段,呈自形,Py2为核部呈多孔结构,Py3为幔部表面光滑;Sd-菱铁矿;Apy-毒砂;Py-黄铁矿;Cc-方解石

Fig.5   Field records,hand specimens and microscopic characteristics of pyrite in different rock types of the Wangu gold deposit (reflected light-g,h,j;BSE-i)


前人根据矿物组合和穿插关系将与成矿有关的热液过程划分为5个阶段,分别是成矿前的石英(Q1)—碳酸盐阶段,含少量的黄铁矿,白钨矿—石英(Q2)阶段、成矿期的毒砂—黄铁矿—石英(Q3)阶段、多硫化物—石英(Q4)阶段和成矿后的石英(Q5)—碳酸盐阶段(Deng et al.,2017)。

黄铁矿作为金的主要载体矿物,普遍赋存在烟灰色石英脉、碳质板岩和蚀变板岩中[图5(d)~5(f)]。根据黄铁矿的形态、颗粒大小、结构和矿物共生组合,将其划分为3类(Py1、Py2和Py3)。Py1主要呈他形或半自形粒状,粒径大于50 μm,平行于层理[图5(e)],表面较光滑、完整。多孔状Py2常见于褪色化围岩中,以脉状(宽50~300 μm不等)产于菱铁矿的表面,平行于层理,由细小的黄铁矿颗粒(粒径为5~100 μm)组成,发育碎裂结构及重结晶次生生长现象[图5(g)]。Py2包裹Py1[图5(h)],Py3见于烟灰色石英脉(Q3)或两侧未蚀变围岩中,呈自形或半自形粒状,直径为5~300 μm,以包裹Py2的形式产出,或与毒砂共生,表面孔隙不发育,但裂隙较发育[图5(b),5(i),5(j)]。毒砂呈菱形、针状与Py3共生,大小为10~200 μm,环带发育较好,未见多期次毒砂[图5(i)]。

3 样品采集与测试

本次测试样品主要采集于距离万古金矿区约2 km超深钻(钻孔808)和矿区内井下的􀃼矿脉,挑选了85个具有代表性的样品将其制成薄片,在东华理工大学核资源与环境国家重点实验室Leica DM2700P显微镜下进行观察,厘清矿物组合及矿物结构等基本特征,对黄铁矿进行细致观察研究,将其划分为3个期次(Py1、Py2和Py3),并对黄铁矿(20ZK6S01-4J和20HJW-2J)进行微量元素面扫描和成分分析。黄铁矿微量元素的面扫描和成分分析工作在广州拓岩分析技术有限公司完成,利用激光剥蚀等离子质谱仪(LA-ICP-MS)进行分析。激光剥蚀系统为NWR 193nm ArF准分子激光剥蚀与iCAP RQ(ICP-MS)耦合。激光剥蚀过程中采用氦气作为载气、氩气作为补偿气以调节灵敏度,二者在进入ICP之前通过一个T型接头混合,激光剥蚀系统配置有信号平滑装置(Hu et al.,2015)。激光斑束和频率分别为5 μm和30 Hz,激光功率为5 J/cm2。黄铁矿微量元素含量处理中采用NIST 610标准玻璃进行调整。以美国地质调查局的硫化物标准物质MASS-1作为监控标样验证校正方法的可靠性。每个时间分辨分析数据包括20~30 s空白信号和50 s样品校正。分析的微量元素包括Au、As、Bi、Co、Ni、Cu、Se、Pb和Te。Au、As、Se、Mn、Co、Ni、Cu、Zn、Mo、Ag、Sb、Te、Pb和Bi的检出限值分别为0.03×10-6、2.07×10-6、3.33×10-6、0.40×10-6、0.65×10-6、0.37×10-6、0.35×10-6、0.50×10-6、0.10×10-6、0.01×10-6、0.24×10-6、0.45×10-6、0.002×10-6和0.02×10-6。毒砂的背散射(BSE)图像拍摄在东华理工大学国家重点实验室利用JEOL JXA-8530F Plus电子探针显微分析仪器完成。毒砂的微量元素测定工作在中南大学有色金属成矿预测与地质环境监测教育部重点实验室开展。实验室配置Telydyne Cetac HE 193nm激光剥蚀系统和Analytik Jena Plasma-Quant MS Ellite等离子体质谱仪。外标采用MASS-1,内标元素为Fe,其他标样(如GSE-2G、NIST SRM610和NIST SRM612)用于测试过程中的信号校正。毒砂测试条件:能量密度为1.3 J/cm2,束斑大小为35 μm,频率为5 Hz,气流量Ar为13.5 L/min,He为1.1 L/min,毒砂剥蚀时间为70 s,由20 s背景+30 s信号+20 s冲洗时间组成;仪器调谐条件:NIST SRM 610 206Pb和232Th均大于100万计数;248Th/232Th小于3‰;206Pb/238U 在0.20~0.25之间;232Th/238U在0.95~1.05之间。测试元素主要有:33S、55Mn、57Fe、59Co、60Ni、65Cu、67Zn、75As、97Mo、107Ag、111Cd、115In、118Sn、121Sb、125Te、197Au、205Tl、208Pb和209Bi(Griffin et al.,2008)。

4 研究结果

4.1 硫化物微量元素成分特征

本研究主要对万古金矿床中黄铁矿和毒砂的微量元素进行了测定,共测定了33个点,其中Py1测定了5个点,Py2测定了8个点,Py3测定了10个点,毒砂测定了10个点。黄铁矿的测试结果详见表1,毒砂的测试结果详见表2

表1   万古金矿床黄铁矿LA-ICP-MS微量元素特征

Table 1  Characteristics of trace elements of pyrite in the Wangu gold deposit by LA-ICP-MS(×10-6

形成时期测点号AuAsSeMnCoNiCuZnMoAgSbTePbBiCo/Ni
Py120ZK6S01-4J-10.101 24424.78152.953037441.84-0.58139.13.416972.751.42
20ZK6S01-4J-20.2075231.8834.518829590.64-1.01277.42.111 3092.250.64
20ZK6S01-4J-30.141 04531.9286.978440457.13-0.66183.53.259573.211.94
20ZK6S01-4J-40.1185824.15778.715438648.44-0.73159.72.738624.780.40
20ZK6S01-4T-10.222534.78234.71301494.719-1.58378.2-1 7351.639.36
Py220ZK6S01-4J-50.1859018.3671.455989068.92-1.32187.32.9095110.640.63
20ZK6S01-4J-60.3481726.6720.5350375115.56-1.83388.33.911 3703.680.93
20ZK6S01-4J-70.263 74318.6342.35781 85895.4100.251.82355.04.201 1124.840.31
20ZK6S01-4J-80.241 31227.8346.949824867.812-1.05198.03.158796.342.01
20ZK6S01-4J-91.022 72051.36529.3566818174.3322.285.07393.87.491 20513.390.69
20ZK6S01-4J-101.185 78249.7325.87261 618365.497.466.52361.914.611 05117.120.45
20ZK6S01-4T-80.341 03814.9442.3347743113.3100.411.88335.84.461 0667.130.47
20ZK6S01-4T-90.613 01526.9035.94 120991174.011-1.55493.07.521 17310.184.16

Py3

20HJW-2J-112.0338 2585.001.37850863.34-0.0821.22.526321.400.15
20HJW-2J-218.0831 83610.281.05722768.130.530.0951.36.335295.550.25
20HJW-2J-330.9041 6725.81-26176102.37-0.0647.56.882094.260.15
20HJW-2J-411.7931 1377.970.86225555.13-0.0525.64.19773.170.24
20HJW-2J-563.9042 0079.841.59161567.82-0.0723.36.11792.610.15
20HJW-2J-613.8124 98811.731.327928055.520.150.0423.32.381182.800.99
20HJW-2J-74.677 98120.477.814224148.03 0530.201.3446.27.883 03110.170.59
20HJW-2J-858.5749 6309.14-2714552.52--13.62.66441.270.19
20HJW-2J-911.5324 85711.250.74820943.32--19.61.986942.170.23
20HJW-2J-101.812 54514.644.545917378.16-0.27162.94.7455213.832.65
检出限0.032.073.330.40.650.370.350.50.10.010.240.450.0020.02

新窗口打开| 下载CSV


表2   万古金矿床毒砂LA-ICP-MS微量元素特征

Table 2  Characteristics of trace elements of arsenopyrite in the Wangu gold deposit by LA-ICP-MS(×10-6

测点号SMnFeCoNiCuZnAsSeMoAgCdInSnSbTeAuTlPbBiCo/Ni
G-1-3342 7821.20342 016.8165.51207.243.27-771 41428.410.1640.270.840.5660.384726.358.420.01321.565.330.316
G-1-6311 2011.49342 016.8436.17110.506.00-767 41836.360.2530.340.580.5180.521232.8274.990.0191.630.330.327
G-1-7232 4531.41342 016.811.4327.963.85-791 26133.150.2530.300.480.4880.403 0103.998.420.01912.948.020.051
G-1-9370 8571.59342 016.843.1035.2211.30-815 33449.330.2090.640.410.4850.484663.7627.830.03919.775.810.088
G-1-10317 1071.55342 016.882.6223.526.64-776 21834.840.2600.350.560.5721.565792.7813.450.01419.744.330.111
G-1-13343 6466.26342 016.8828.7932.1611.00-738 72268.080.7200.360.470.5070.492072.8196.840.03325.764.680.895
G-1-14397 8231.54342 016.841.5423.174.22-806 93845.730.2500.390.510.6620.461143.0347.490.03011.922.030.066
G-1-15289 7352.03342 016.8493.37178.654.57-699 27135.460.2150.350.470.5700.521523.8088.380.0187.322.090.523
G-4-6338 0402.44342 016.84434.85687.526.30-727 24547.100.3500.500.820.5810.737474.6528.370.02928.535.070.632
G-4-7255 5861.67342 016.8449.41176.7810.40-645 21233.830.3000.370.500.4400.471912.9862.540.01517.113.670.279

新窗口打开| 下载CSV


表1可知,As元素在Py1、Py2和Py3中的含量均较高,含量变化分别为252.9×10-6~1 243.79×10-6、2 590×10-6~5 781.91×10-6和2 545.12×10-6~49 630.47×10-6;Zn、Mo、Ag、Te和Bi元素在Py1、Py2和Py3中的含量较低,含量分别介于2×10-6~19×10-6(Py3中个别为3 053×10-6)、0.10×10-6~7.46×10-6(大部分均低于检出限)、0.01×10-6~6.52×10-6(少部分低于检出限)、0.45×10-6~14.61×10-6、1.27×10-6~17.12×10-6和0.15×10-6~9.36×10-6之间;Se、Mn元素在Py3中的含量均偏低,含量分别介于5.00×10-6~20.47×10-6和0.40×10-6~7.80×10-6;Se、Mn和Cu在Py1和Py2中的含量均较高,含量分别介于4.78×10-6~51.36×10-6、20.50×10-6~778.70×10-6和41.80×10-6~365.40×10-6;Cu在Py3中的含量均较高,含量介于43.30×10-6~ 102.30×10-6之间;Au在Py1(0.10×10-6~0.22×10-6)中的含量较低,与Py1相比,Py2中的Au含量相对较高,介于0.18×10-6~1.18×10-6之间,Py3中Au含量偏高,总体介于1.81×10-6~63.90×10-6之间。另外,Py1和Py2阶段的黄铁矿Co、Ni元素均显示含量较高的特征,分别为130×10-6~4 120×10-6和14×10-6~1 858×10-6,与Py1和Py2相比,Py3中Co、Ni含量相对较少,介于26×10-6~459×10-6和145×10-6~615×10-6,其Co/Ni比值介于0.15~4.16之间,20ZK6S01-4T-1的Py1阶段Co/Ni比值为9.36。

表2可知,S、Fe和As元素在毒砂中的含量均较高,含量变化分别为232 453×10-6~397 823×10-6、342 016.81×10-6~ 342 016.88×10-6和645 212×10-6~815 334×10-6;与S、Fe和As元素相比,Co、Ni、Cu、Se、Sb、Te、Au、Pb和Bi元素在毒砂中的含量相对较低,分别介于1.43×10-6~434.85×10-6、23.17×10-6~687.52×10-6、3.27×10-6~11.27×10-6、28.41×10-6~68.08×10-6、114×10-6~3 010×10-6、2.78×10-6~6.35×10-6、8.42×10-6~96.84×10-6(Au元素平均值为42.29×10-6)、1.63×10-6~28.53×10-6和0.328×10-6~8.02×10-6;Mo、Ag、Cd、In、Sn和Tl元素含量均偏低,分别介于0.16×10-6~0.72×10-6、0.27×10-6~0.64×10-6、0.41×10-6~ 0.84×10-6、0.44×10-6~0.66×10-6、0.38×10-6~1.56×10-6和0.013×10-6~0.039×10-6,Zn元素含量低于检出限,其中Co/Ni比值介于0.051×10-6~0.895×10-6之间。

4.2 硫化物微量元素面扫描

20ZK6S01-4J薄片中,在反射光下黄铁矿Py1与Py2分界较为明显[图6(a)]。根据LA-ICP-MS对黄铁矿的面扫描结果,Au元素在Py1和Py2中的分布均匀[图6(b)],且元素浓度较低。As元素在Py1和Py2中的分布明显不均匀,Py1中的As浓度较低,Py2中的As浓度高于Py1,但As元素在Py2中的分布极不均匀,呈斑点状聚集在Py2的边缘。在As聚集异常高的部位,出现Au浓度异常升高[图6(b),6(c)]。Pb元素在Py1中的浓度高于Py2,主要富集在Py1与Py2过渡部位[图6(d)];Bi元素在Py1和Py2中均呈现出带状分布的特点,Py2中的Bi浓度高于Py1[图6(e)];Co元素在Py2中的浓度高于Py1,主要富集在Py1与Py2过渡部位[图6(f)];Ni元素在Py1和Py2中的分布不均匀,Py2中的Ni浓度高于Py1,呈斑点状聚集在Py2的边缘[图6(g)];Cu元素在Py1和Py2中的分布较为均匀,Py1的Cu较Py2富集[图6(h)];Sb元素在Py1中的分布较为均匀,而在Py2中的分布不均匀,呈斑块(点)状分布,Py2中的Sb浓度高于Py1[图6(i)]。

图6

图6   样品20ZK6S01-4J中的黄铁矿LA-ICP-MS面扫描图像

Fig.6   LA-ICP-MS surface scanning images of pyrite in sample 20ZK6S01-4J


20HJW-2J薄片中,在反射光下黄铁矿Py2与Py3分界较为明显[图7(a)],Au元素在黄铁矿Py2中的分布较均匀,Py3中的Au浓度分布不均匀,呈斑点状富集,Py2中的Au浓度比Py3中低[图7(b)];As元素在Py2和Py3中的分布较均匀,Py2与Py3中的As浓度界限较为明显,Py3中的As较Py2中明显富集[图7(c)]。在As聚集异常高的部位,出现Au浓度异常升高[图7(b),7(c)]。Pb元素在Py2和Py3中的分布明显不均匀,Py3中的Pb浓度较低,Py2中的Pb浓度高于Py3,呈斑点状聚集在Py2和Py3中[图7(d)];Bi元素在Py2和Py3中的分布明显不均匀,Py2中的Bi浓度较高,Py3中的Bi浓度低于Py2,呈斑点状聚集在Py2中[图7(e)]。Co元素在Py2和Py3中的分布不均匀,Py2中的Co浓度高于Py3,Co元素呈斑块状分布在Py2中[图7(f)];Ni在Py2和Py3中的分布较为均匀,Py3中的Ni浓度高于Py2,Ni元素主要富集在Py3的边缘[图7(g)]。Cu元素在Py2和Py3中的分布较为均匀,Py2中的Cu浓度高于Py3[图7(h)]。Sb元素在Py2和Py3中的分布明显不均匀,Py2中的Sb浓度高于Py3,Sb元素呈斑点状聚集在Py2和Py3的边缘[图7(i)]。

图7

图7   样品20HJW-2J中的黄铁矿LA-ICP-MS面扫描图像

Fig.7   LA-ICP-MS surface scanning images of pyrite in sample 20HJW-2J


5 讨论

5.1 金和微量元素之间的化学行为

目前大量研究表明,Au1+是金在固体和溶液中最稳定的化学态,Au0也会以纳米颗粒的形式(纳米金)被吸附在硫化物的表面(Deditius et al.,2008Hastie et al.,2021)。金在热液矿床中的溶解与硫化物中的As(及其他伴生元素Sb,Se,Te等)密切相关,且在毒砂和黄铁矿同时存在的金矿床中,毒砂中的金含量明显高于黄铁矿,如河北省北部的东坪金矿和湘中地区的古台山金矿等(Cook et al.,20092013Li et al.,20192021)。诸多学者对硫化物的微区结构、As等其他元素与Au元素的化学耦合进行了分析研究(Reich et al.,2005Cook et al.,20092013Xu et al.,2016Fougerouse et al.,2016Wu et al.,2019aLi et al.,20192021)。然而,对于含砷硫化物中Au与As(及其他伴生元素Sb,Se,Te等)在空间上密切联系的根本原因目前仍存有争议。

As很可能以As1-取代S,在黄铁矿与毒砂之间形成Fe(As,S)2固溶体,即形成含砷的黄铁矿(Reich et al.,2005Buchholz et al.,2007Liang et al.,2017),而在少数热液矿床中,有研究人员提出As3+也可能会取代黄铁矿中的Fe2+Deditius et al.,2008)。可能控制Au-As行为的因素已经被提出来,环带状矿物中元素的分布记录了长期热液活动下矿物生长过程中内在晶体生长的动力学机制和外在的流体性质变化机制(Wu et al.,2019bLi et al.,2021)。因此,流体中Au和As的含量变化在很大程度上可以解释为Au-As的化学行为。此外,纳米金(Au0)也可能吸附在黄铁矿的表面(Hastie et al.,2021Li et al.,2021),致使出现Au-As耦合的行为。

毒砂中的Sb、Bi与Au元素呈负相关性[图8(a),8(b)],Cu、Se与Au元素呈正相关性[图8(c),8(d)],As与Co/Ni则没有明显的相关性[图8(e),8(f)]。Py3与毒砂中的Au、As含量均较高,而毒砂中的As含量最高,但毒砂中的Au与As元素相关性并不明显[图8(e)]。毒砂中的Cu含量整体低于黄铁矿中的Cu含量,As含量则高于黄铁矿中的As含量[图8(g)]。毒砂中的Pb含量整体低于黄铁矿中的Pb含量[图8(h)]。毒砂中的Se含量与Py2中的Se含量相似,Te含量与Py1和Py2中Te含量相似[图8(i)]。如图8所示,毒砂中的Au、Bi、Co/Ni和Pb的含量与Py3相似,而与Py1、Py2明显不同,结合岩相学中毒砂与Py3的共生关系,说明Py3为主要的金成矿阶段。

图8

图8   万古金矿20ZK6S01-4J和20HJW-2J中黄铁矿及毒砂的LA-ICP-MS分析

Fig.8   LA-ICP-MS analysis of pyrite and arsenopyrite in 20ZK6S01-4J and 20HJW-2J of the Wangu gold deposit


通过对万古金矿3个阶段的黄铁矿和毒砂进行微区结构、LA-ICP-MS面扫描和微量元素成分分析,揭示Py1、Py2和Py3中的Au浓度有显著的差异,Au元素主要赋存于成矿阶段的Py3中,而在Py2中的浓度较低。这可能是由于形成Py2的流体不含金所致(Reich et al.,2005),该现象与前人研究结果一致(Deng et al.,20172020Ma et al.,2021)。同时,Py3中As元素出现在与Au元素富集相应的位置,且毒砂中的Au与As含量较高[图8(e)],表明Au元素与As元素存在很好的耦合关系[图7(b),7(c)]。这些Au浓度明显低于金饱和曲线[图8(e)],因此Au在黄铁矿中主要以Au1+的形式存在于黄铁矿的晶格中。在该过程中,As很可能以As1-取代S,在黄铁矿与毒砂之间形成Fe(As,S)2固溶体,即形成含砷的黄铁矿(Reich et al.,2005Buchholz et al.,2007Liang et al.,2017)。

此外,Sb在Py2中异常富集,而在Py1和Py3中亏损[图6(i),7(i)],且聚集在Py1向Py2过渡的部位[图6(i)],这可能是Py1中的Sb扩散所致。Pb、Bi、Co和Ni元素在Py1和Py2中的分布与Sb元素相同,主要呈带状分布在Py1与Py2的接触部位,这可能代表Py2对Py1有继承作用,晶内扩散是Py2中元素分布的主要形成机制(Fougerouse et al.,2016)。

5.2 对金成矿的启示

前人关于地质年代学、地球化学、构造地质学和围岩蚀变的研究表明,万古金矿的金矿化与加里东期富CO2的流体和燕山期贫CO2的流体有关,燕山期是最主要的成矿期,硫化作用是主要的金沉淀机制(Xu et al.,2017bDeng et al.,20172020Zhou et al.,2021Ma et al.,2021)。本文从黄铁矿微量元素的角度出发,结合前人研究结果,发现Py1为原生黄铁矿,与地层平行,不含金。Py2与菱铁矿共生,Ma et al.(2021)认为菱铁矿形成于成矿前,是加里东期不含金富CO2的流体与围岩发生水岩反应所生成,因此Py2可能形成于成矿前的加里东期,且对Py1有一定的继承性。根据Py2的微量元素组成特征,推测该期流体可能具有一定的Au和As含量,且富Cu、Bi、Se和Pb等元素。Py3与烟灰色石英、毒砂共生,流体具有较高的Au和As含量,该期流体可能形成于燕山期(Ma et al.,2021),其与围岩发生硫化作用或活化先前的硫化物,导致大规模金的沉淀,为主要的金矿化阶段(Deng et al.,20172020)。

硫化物的溶解—再沉淀已被广泛用来解释Au与其他元素在黄铁矿中的分带模型(Cook et al.,2009Xu et al.,2016Bell et al.,2017Li et al.,2019)。Py2表面孔隙发育,这是典型溶解—再沉淀的特征(Fougerouse et al.,2016;Hastie et al.,2020),这种现象表明该期黄铁矿遭受了后期流体的溶解,然后再沉淀成Py3。在该过程中,燕山期含金流体与早期的黄铁矿Py2相互反应,通过黄铁矿溶解—再沉淀反应,破坏了流体中Au-HS络合物的稳定性,形成含金的Py3。因此,结合前人研究(Deng et al.,2020Ma et al.,2021)得出,硫化作用是万古金矿主要的金沉淀机制,富含Py2与菱铁矿的围岩是金沉淀理想的化学圈闭。

6 结论

(1)根据矿物共生组合、黄铁矿的形态和结构特征,将万古金矿中的黄铁矿划分为Py1、Py2和Py3共3种类型。其中,Py1平行于层理分布,为原生黄铁矿,不含金;Py2与菱铁矿共生,形成于成矿前,可能为加里东期富CO2的流体与围岩发生水岩反应所生成,同样不含金;Py3与烟灰色石英共生,可能形成于成矿期。

(2)硫化作用是万古金矿中金沉淀的主要机制,LA-ICP-MS面扫描结果表明,成矿前Py2对Py1有一定的继承性,经溶解—再沉淀后为成矿期的Py3提供了良好的化学圈闭。

(3)万古金矿中存在Au-As耦合,Au主要以Au1+的形式存在于黄铁矿的晶格中。

中国矿业报)

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-5-676.shtml

参考文献

Bai DaoyuanJia BaohuaZhong Xianget al2012.

Potential genesis of the trending changes of Jinning period and Caledonian structural lineamens in middle-southern Hunan

[J].Journal of Geomechanics,182):165-177.

Bell R MKolb JWaight T Eet al2017.

A Palaeoproterozoic multi-stage hydrothermal alteration system at Nalunaq gold deposit,South Greenland

[J].Mineralium Deposita,523):383-404.

[本文引用: 1]

Buchholz POberthur TLuders Vet al2007.

Multistage Au-As-Sb mineralization and crustal-scale fluid evolution in the Kwekwe District,Midlands Greenstone Belt,Zimbabwe:A combined geochemical,mineralogical,stable isotope,and fluid inclusion study

[J].Economic Geology,1023):347-378.

[本文引用: 2]

Cawood P AZhao G CYao J Let al2018.

Reconstructing south China in Phanerozoic and Precambrian supercontinents

[J].Earth Science Reviews,186173-194.

[本文引用: 1]

Cline J SHofstra A HMuntean J Let al2005.Carlin-Type Gold Deposits in NevadaCritical Geologic Characteristics and Viable Models[M].LittletonSociety of Econornic Geologists,Economic Geology 100th Anniversary Volume451-484.

[本文引用: 1]

Cook N JCiobanu C LMao J2009.

Textural control on gold distribution in As-free pyrite from the Dongping,Huangtuliang and Hougou gold deposits,North China Craton (Hebei Province,China)

[J].Chemical Geology,264(1/2/3/4):101-121.

[本文引用: 4]

Cook N JCiobanu C LMeria Det al2013.

Arsenopyrite-pyrite association in an orogenic gold ore:Tracing mineralization history from textures and trace elements

[J].Economic Geology,1086):1273-1283.

[本文引用: 3]

Deditius A PUtsunomiya SRenock Det al2008.

A proposed new type of arsenian pyrite:Composition,nanostructure and geological significance

[J].Geochimica et Cosmochimica Acta,7212):2919-2933.

[本文引用: 2]

Deng JWang QLi G2017.

Tectonic evolution,superimposed orogeny,and composite metallogenic system in China

[J].Gondwana Research,50216-266.

[本文引用: 8]

Deng TXu DChi Get al2020.

Caledonian(Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China

[J].Ore Geology Reviews,124103586.

[本文引用: 11]

Fougerouse DMicklethwaite STomkins A Get al2016.

Gold remobilisation and formation of high grade ore shoots driven by dissolution-reprecipitation replacement and Ni substitution into auriferous arsenopyrite

[J].Geochimica et Cosmochimica Acta,178143-159.

[本文引用: 3]

Frimmel H EGroves D IKirk Jet al2005.The Formation and Preservation of the Witwatersrand Goldfields,the World’s Largest Gold Province[M].LittletonSociety of Econornic Geologists,Economic Geology 100th Anniversary Volume769-797.

[本文引用: 1]

Fu GongguXu DeruChen Guanghaoet al2002.

New recognition on geological characteristics of gold ore deposits in northeastern Hunan Province,China and new prospecting advances

[J].Geotectonica et Metallogenia,264):7.

Griffin W LPowell W JPearson N Jet al2008.

GLITTER:Data reduction software for laser ablation ICP-MS

[C]//Sylvester P,ed.Laser Ablation-ICP-MS in the Earth Sciences:Current Practices and Outstanding Issues.OttawaMineralogical Association of Canada.

[本文引用: 1]

Groves D IGoldfarb R JGebre-Mariam Met al1998.

Orogenic gold deposits:A proposed classification in the context of their crustal distribution and relationship to other gold deposit types

[J].Ore Geology Reviews,13(1/2/3/4/5):7-27.

[本文引用: 1]

Haroldson E LBrown P EBodnar R J2018.

Involvement of variably-sourced fluids during the formation and later overprinting of Paleoproterozoic Au-Cu mineralization:Insights gained from a fluid inclusion assemblage approach

[J].Chemical Geology,497115-127.

Hastie E C GSchindler MKontak D Jet al2021.

Transport and coarsening of gold nanoparticles in an orogenic deposit by dissolution-reprecipitation and ostwald ripening

[J].Communications Earth and Environment,21):57.

[本文引用: 2]

Hu ZZhang WLiu Yet al2015.“

Wave” signal-smoothing and mercury-removing device for laser ablation quadrupole and multiple collector ICPMS analysis:Application to lead isotope analysis

[J].Analytical Chemistry,872):1152-1157.

[本文引用: 1]

Li WCook N JXie G Qet al2019.

Textures and trace element signatures of pyrite and arsenopyrite from the Gutaishan Au-Sb deposit,south China

[J].Mineralium Deposita,544):591-610.

[本文引用: 3]

Li WCook N JXie G Qet al2021.

Complementary textural,trace element,and isotopic analyses of sulfides constrain ore-forming processes for the slate-hosted Yuhengtang Au deposit,south China

[J].Economic Geology,1168):1825-1848.

[本文引用: 5]

Li Z XLi X H2007.

Formation of the 1300-km-wide intracontinental orogen and postorogenic magmatic province in Mesozoic south China:A flat-slab subduction model

[J].Geology,352):179.

[本文引用: 1]

Liang RChi GAshton Ket al2017.

Fluid compositions and P-T conditions of vein-type uranium mineralization in the Beaverlodge uranium district,northern Saskatchewan,Canada

[J].Ore Geology Reviews,80460-483.

[本文引用: 2]

Liu QShao YChen Met al2019.

Insights into the genesis of orogenic gold deposits from the Zhengchong gold field,Northeastern Hunan Province,China

[J].Ore Geology Reviews,105337-355.

[本文引用: 2]

Ma WDeng TXu Det al2021.

Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan orogenic belt and implications for gold mineralization

[J].Ore Geology Reviews,139104479.

[本文引用: 8]

Mao JingwenLi Hongyan1997.

Research on genesis of the gold deposits in the Jiangnan terrain

[J].Geochimica,265):11.

[本文引用: 3]

Meffre SLarge R RSteadman J Aet al2016.

Multi-stage enrichment processes for large gold-bearing ore deposits

[J].Ore Geology Reviews,76268-279.

[本文引用: 2]

Reich MKesler S EUtsunomiya Set al2005.

Solubility of gold in arsenian pyrite

[J].Geochimica et Cosmochimica Acta,6911):2781-2796.

[本文引用: 5]

Rudnick RShan G1968.

Composition of the continental crust

[J].Origin and Distribution of the Elements,3549-557.

[本文引用: 1]

Shu Liangshu2012.

An analysis of principal features of tectonic evolution in South China Block

[J].Geological Bulletin of China,317):19.

Shu LiangshuWang Dezi2006.

A comparision study of basin and range tectonics in the Western North America and Southeastern China

[J].Geological Journal of China Universities,121):1-13.

Wang Jian2010.

Characteristics of Compounding-combine Fold Superposition and Dynamics of the Xuefengshan Tectonic System

[D].QingdaoOcean University of China.

Wen ZhilinDeng TengDong Guojunet al2016.

Characteristcs of ore-controlling structures of Wangu gold deposit in Northeastern Hunan Province

[J].Geotectonica et Metallogenia,402):14.

Wu Y FEvans KLi J Wet al2019a.

Metal remobilization and ore-fluid perturbation during episodic replacement of auriferous pyrite from an epizonal orogenic gold deposit

[J].Geochimica et Cosmochimica Acta,24598-117.

[本文引用: 1]

Wu Y FFougerouse DEvans Ket al2019b.Gold,

arsenic,and copper zoning in pyrite:A record of fluid chemistry and growth kinetics

[J].Geology,477):641-644.

[本文引用: 1]

Xiao YongjunChen Guanghao2004.

Preliminary study on the tectono-metallogenic orientation mechanism of the Dadong-Wangu gold deposits zone,Northeast Hunan Province

[J].Geotectonica et Metallogenia,281):38-44.

Xu D RChi G XZhang Y Het al2017a.

Yanshanian (Late Mesozoic) ore deposits in China—An introduction to the special issue

[J].Ore Geology Reviews,88481-490.

[本文引用: 2]

Xu DDeng TChi Get al2017b.

Gold mineralization in the Jiangnan orogenic belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting

[J].Ore Geology Reviews,88565-618.

[本文引用: 9]

Xu DeruDong GuojunDeng Tenget al2015.

Large-scale gold mineralization and geodynamic background in Northeast Hunan

[J].Acta Mineralogica Sinica,(Supp.1):1.

Xu W GFan H RYang K Fet al2016.

Exhaustive gold mineralizing processes of the Sanshandao gold deposit,Jiaodong Peninsula,Eastern China:Displayed by hydrothermal alteration modeling

[J].Journal of Asian Earth Sciences,129152-169.

[本文引用: 2]

Zhang LGroves D IYang L Qet al2020.

Utilization of pre-existing competent and barren quartz veins as hosts to later orogenic gold ores at Huangjindong gold deposit,Jiangnan Orogen,Southern China

[J].Mineralium Deposita,552):363-380.

[本文引用: 3]

Zhang TingPeng Jiantang2017.

Wallrock alteration and its relation with gold mineralization in the Herenping albite-quartz lode gold deposit in Western Human

[J].Journal of Earth Sciences and Environment,364):32-44.

[本文引用: 1]

Zhou XSun TShen Wet al2006.

Petrogenesis of Mesozoic granitoids and volcanic rocks in south China:A response to tectonic evolution

[J].Geological Curtain:English Version,291):26-33.

[本文引用: 1]

Zhou YXu DDong Get al2021.

The role of structural reactivation for gold mineralization in Northeastern Hunan Province,South China

[J].Journal of Structural Geology,145104306.

[本文引用: 8]

柏道远贾宝华钟响2012.

湘中南晋宁期和加里东期构造线走向变化成因

[J].地质力学学报,182):165-177.

[本文引用: 1]

符巩固许德如陈广浩2002.

湘东北地区金成矿地质特征及找矿新进展

[J].大地构造与成矿学,264):7.

[本文引用: 1]

毛景文李红艳1997.

江南古陆某些金矿床成因讨论

[J].地球化学,265):11.

[本文引用: 7]

舒良树2012.

华南构造演化的基本特征

[J].地质通报,317):19.

[本文引用: 1]

舒良树王德滋2006.

北美西部与中国东南部盆岭构造对比研究

[J].高校地质学报,121):1-13.

[本文引用: 1]

王建2010.

雪峰山构造系统褶皱复合—联合叠加样式及动力机制

[D].青岛中国海洋大学.

[本文引用: 1]

文志林邓腾董国军2016.

湘东北万古金矿床控矿构造特征与控矿规律研究

[J].大地构造与成矿学,402):14.

[本文引用: 2]

肖拥军陈广浩2004.

湘东北大洞—万古地区金矿构造成矿定位机制的初步研究

[J].大地构造与成矿学,281):38-44.

[本文引用: 1]

许德如董国军邓腾2015.

湘东北地区大规模金成矿作用及地球动力学背景

[J].矿物学报,(增1):1.

[本文引用: 3]

张婷彭建堂2014.

湘西合仁坪钠长石石英脉型金矿床围岩蚀变及质量平衡

[J].地球科学与环境学报,364):32-44.

[本文引用: 1]

/