When the mining method in the West No.2 mining area of Longshou mine was changed from down layered cemented filling mining method to sublevel caving mining method,it is necessary to form a loose overburden by caving or blasting the large area cemented filling.Using the traditional drilling and blasting method to form the loose overburden has a series of disadvantages,such as long period,large input and less output,which can not meet the production needs of the mine.A induced caving technical scheme of forming loose overburden by reserving ore bulk as safety cushion and uniformly expanding goaf was proposed,which combined the formation of overburden with the dual demand of stope productivity.Microseismic monitoring technology was used to monitor the caving process of cemented backfill.The monitoring results show that the caving mechanism of cemented backfill in West No.2 mining area can be divided into three types.The first type is the failure event of cemented backfill caused by the mining stress concentration within 20~45 m behind the goaf,which mainly occurs in the early to middle stage of drifts mining.The second type is that with the expansion of the goaf,the shear stress at the fulcrum of the suspended cemented backfill beam is also increasing,when the shear stress exceeds the shear strength of the cemented backfill,the beam will shear failure at the fulcrum at the rear edge of the goaf,this kind of failure event mainly occurs in the middle to end stage of drifts mining.The third is that when the exposed length of the cemented backfill beam increases to a certain extent,the cemented backfill beam bends and sinks under the ground pressure and its own gravity,resulting in tensile stress in the middle of the rock beam of the filling body,resulting in bending and tensile failure in the middle of the cemented backfill beam,this kind of failure event mainly occurs in the middle to end stage of drifts mining.Based on the comprehensive analysis of the results of microseismic monitoring,theoretical calculation and in-site ore drawing tracking,it can be seen that during 1 595 m sublevel mining,the caving of cemented backfill mainly occurs at the level of 1 610~1 630 m.Therefore,a loose overburden composed of residual ore and caving cemented backfill with a total thickness of about 30 m is formed on the floor of the first mining sublevel.This loose overburden thickness meets the safety requirements of mining and the requirements of relevant safety regulations,which shows that the preset goal of forming loose overburden safely,efficiently and at low cost has been successfully achieved by using induced caving technology in the West No.2 mining area.
SU Huayou, WANG Yongding, TAN Baohui, LONG Weiguo, YANG Ning, ZHANG Zhigui, CHEN Xingming. Study on Induced Caving Mechanism and Development Process of Large Area Cemented Backfill[J]. Gold Science and Technology, 2022, 30(5): 713-723 doi:10.11872/j.issn.1005-2518.2022.05.062
Fig.7
Relationship between occurrence heights of strong micro-seismic events and mining time,goaf area during the study period(from May 28,2019 to September 10,2019)
Study on Falling Law and Its Applicationof Magnesite Orebody and Rock with Multi-mined-out Areas
0
2017
Caving height prediction of caving method based on time-delay nonlinear MGM model
0
2020
Study on calculation method of roof caving arch height in layered rock roadway
0
2012
Numerical investigation of arching mechanism to underground excavation in jointed rock mass
1
2015
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
Goaf monitoring based on RG win logger and it’s application
0
2015
Experimental study on overburden deformation evolution under mining effect based on distributed fiber optical sensing technology
0
2020
Influence of impact load induced by large-scale roof caving on the failure characteristics of mining floor
0
2019
Calculation model of range of surface subsidence caused by the caving in mined-out area of metal mine
0
2020
Block caving-induced strata movement and associated surface subsidence:A numerical study based on a demonstration model
1
2014
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
Technology of controlling roof falling hazard about synchronous caving in upper and lower mining areas
0
2016
Temporal and spatial characteristics of micro-seismic events during roof sliding caving in deep metal mine
0
2021
Induced caving technique and it’s application in Beiminghe iron mine
0
2007
A new mining scheme for hanging-wall ore-body during the transition from open pit to underground mining:A numerical study
1
2018
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
Role of rock mass fabric and faulting in the development of block caving induced surface subsidence
0
2010
Caving mechanisms of loose top-coal in longwall top-coal caving mining method
1
2014
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
Application of induced caving technology in formation of overburden layer for caving mining method in Longshou mine
0
2021
Discrete element modeling of strata and surface movement induced by mining under open-pit final slope
1
2016
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
多空区菱镁矿矿岩冒落规律及其应用研究
1
2017
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
基于时滞非线性MGM模型的崩落法开采冒落高度预测研究
1
2020
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
层状岩体巷道顶板冒落拱高度计算方法研究
1
2012
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
基于RG井下电视系统的空区冒落监测
1
2015
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
基于分布式光纤技术的采动影响下覆岩变形演化规律试验研究
1
2020
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...
... 为了揭示崩落法采场顶板冒落机理及其发展过程,近年来国内外矿业领域专家采用理论计算(李海英等,2020;谷拴成等,2012)、试验研究(付建新等,2020;曹建立,2017;Wang et al.,2014)、数值计算(Tan et al.,2018;Li et al.,2014;Xu et al.,2016)及现场监测(何荣兴等,2015;侯公羽等,2020;刘建坡等,2021)等方法对这一问题进行了研究.结果表明,顶板冒落机制可划分为拱形冒落、筒状冒落、柱塞式冒落和沿破碎带的抽冒等几种类型,而顶板矿岩结构、强度、矿区地质构造、应力大小及方向、采空区形态及规模、空区埋深和回采顺序等因素均会对顶板的冒落发展产生明显影响.不同顶板冒落模式对崩落法采矿安全产生的影响也不同,如拱形冒落一般按周期向上发展,在冒透地表前,其一次冒落量有限,对采场产生的危害也较小(Vyazmen-sky et al.,2010);筒状冒落和柱塞式冒落通常可一次冒透地表,具有一次冒落量大、易产生矿震和冲击气浪危害的特点(He et al.,2015).由此可见,崩落法采场顶板围岩的冒落机理及冒落形式多种多样,冒落产生的危害及其控制难易程度也各不相同. ...