img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2022, 30(5): 778-786 doi: 10.11872/j.issn.1005-2518.2022.05.053

采选技术与矿山管理

复合岩石单轴压缩力学与破坏特性试验研究

赖玉彰,1, 支学艺1, 舒荣华,1,2

1.江西理工大学资源与环境工程学院,江西 赣州 341000

2.江西理工大学钨资源高效开发及应用技术教育部工程研究中心,江西 赣州 341000

Experimental Study on Uniaxial Compression Mechanics and Failure Characteristics of Composite Rocks

LAI Yuzhang,1, ZHI Xueyi1, SHU Ronghua,1,2

1.School of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, China

2.Engineering Research Center for High-efficiency Development and Application Technology of Tungsten Resources (Jiangxi University of Science and Technology), Ministry of Education of the People’s Republic of China, Ganzhou 341000, Jiangxi, China

通讯作者: 舒荣华(1992-),男,江西赣州人,副教授,从事岩土工程及灾害控制相关教学与科研工作。srh1025@jxust.edu.cn

收稿日期: 2022-04-18   修回日期: 2022-09-14  

基金资助: 江西省教育厅科技项目“高温岩石宏细观结构特征及其损伤机理研究”.  GJJ200856
“装配式桥梁单个装配件工程监管扩展功能研究”.  GJJ190501
江西理工大学科研启动项目“不同升温速率处理后岩石的动态力学特性研究”.  205200100551
江西省大学生创新创业训练计划项目“温—压耦合作用下混凝土的力学特性及灾变机制研究”.  S202110407047

Received: 2022-04-18   Revised: 2022-09-14  

作者简介 About authors

赖玉彰(1997-),男,江西赣州人,硕士研究生,从事岩石力学研究工作1029880354@qq.com , E-mail:1029880354@qq.com

摘要

针对深部高地应力及多岩层复杂地质条件,采用伺服控制试验机对复合岩石进行室内力学试验,重现复合岩石在高应力作用下的破坏过程。复合岩石由强度差且强度呈均匀阶梯型的单岩组成,可划分为蛇纹岩—矽卡岩和蛇纹岩—砂岩。通过单轴压缩试验,获得岩石的单一和复合形态下的力学性质与破坏特性。研究结果表明:在高应力作用下,复合岩石中岩石强度较弱的部分首先发生破坏,且初始裂纹的萌生位置和发展模式直接决定了岩样的最终破坏形态;复合岩石与单一岩石之间的抗压强度存在相关性;利用理想弹簧模型可对复合岩石的弹性模量和峰值应变进行推导。复合岩石的力学特性由强弱端岩石共同决定,存在一定的规律性,其破坏特性与单一岩石相似,但较弱端占主要影响地位。

关键词: 复合岩石 ; 砂岩 ; 矽卡岩 ; 蛇纹岩 ; 单轴压缩 ; 力学特性 ; 破坏特性

Abstract

Underground geotechnical engineering is often located in high stress stratum,which is easy to cause disasters such as damage and expansion of surrounding rock,large-scale fracture and swelling.With the implementation of construction,it is inevitable to encounter composite rock with more complex stress distribution and rock mass failure.In view of the deep high in-situ stress and multi-rock complex geological conditions,the servo control testing machine was used to conduct indoor mechanical experiments on composite rock,and the failure process of composite rock under high stress was reproduced,so as to provide reference for the stability analysis of composite rock with different materials.Skarn,serpentine and sandstone were selected as the components of composite rock,and their strengths are 80.25 MPa,83.29 MPa and 87.41 MPa respectively.They have a relatively similar strength relationship with uniform gradient increase,which is convenient to compare the mechanical properties of composite rock.The composite rocks can be divided into two types,one is serpentinite and skarn assemblage,the other is serpentinite and sandstone assemblage.The combination mode is 0°contact surface,the volume proportion of components is the same,and the components with weak strength are located in the upper part of the combination rock.Through uniaxial compression tests,the mechanical properties and failure characteristics of skarn,sandstone and serpentinite in single and composite forms were obtained,including uniaxial compressive strength,peak strain,elastic modulus and failure mode.By comparing the stress-strain curves and the actual failure situation,it can be seen that the composite rock and single rock have similar failure modes,with obvious characteristics of compaction stage,elastic stage,plastic stage and failure stage,and the initiation position and development mode of the initial crack directly determine the final failure mode of the rock sample.Based on the experimental data,it is inferred that there is a quantitative relationship between the compressive strength of a single rock and its composite rock,and this inference was verified.According to the homogenization theory,the composite rock was compared to the ideal series spring model,and the formulas of elastic modulus,peak strain and volume of each component in the composite rock awere deduced by using Hooke’s law.The theoretical results are close to the experimental results.Under the condition of uniaxial compression,the compressive stress on the contact surface of composite rock specimen gradually changes to the tensile stress perpendicular to the compression direction,and the composite rock is mainly shear failure.Under the action of high stress,the deformation phenomena of the two kinds of rocks in the composite rock are not synchronous,and the part with low strength is destroyed first,this shows that in composite rocks,weak facies rocks play a major role in the overall strength of composite rocks.

Keywords: composite rock ; sandstone ; skarn ; serpentine ; uniaxial compression ; mechanical properties ; failure characteristics

PDF (3958KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

赖玉彰, 支学艺, 舒荣华. 复合岩石单轴压缩力学与破坏特性试验研究[J]. 黄金科学技术, 2022, 30(5): 778-786 doi:10.11872/j.issn.1005-2518.2022.05.053

LAI Yuzhang, ZHI Xueyi, SHU Ronghua. Experimental Study on Uniaxial Compression Mechanics and Failure Characteristics of Composite Rocks[J]. Gold Science and Technology, 2022, 30(5): 778-786 doi:10.11872/j.issn.1005-2518.2022.05.053

复合岩石是岩石常见的存在形态,由于其组成成分多样,因此具有复杂的岩性及岩体结构特征。矿山地下岩土工程大多处于高地应力地层,随着施工的进行,难免会遇到复合岩石,其相对复杂的应力分布和岩体破坏,容易引发围岩损伤扩容和岩层破裂碎胀等灾害(董家兴等,2014刘汉香等,2021)。贾明魁(2007)对18个大型矿区进行调研,结果显示在162起锚杆支护煤巷冒顶事故中,岩层复合劣化型冒顶共发生107起,占调查事故总数的66.04%,是引起冒顶事故的主要原因。因此,研究复合岩石的失效模式(邢轲轲等,2020赵光明等,2015李远等,2012)和力学性质,对于维护岩土工程稳定性具有重要意义。

随着工程技术的进步和矿山安全需求的提高,国内外学者对复合岩石的研究逐渐深入。基于“复合等效方法”和Mohr-Coulomb理论,阳友奎等(1990)提出复合岩石破坏准则,并通过三轴试验验证,指出复合岩石的强度特性能被精确描述,其失效模式与应力状态及方向角有关;付鹏等(2022)综合单轴压缩与声发射试验提出,复合岩石的破坏特征不是单一岩石破坏特征的直接相加,而是在荷载作用下耦合破坏的结果,强度高的硬岩能够约束强度低的软岩发生横向形变;刘晓云等(2017)研究发现,复合岩石中相似材料强度比越大,对复合岩石整体强度的影响也越大;陈宇龙等(2017)采用离散单元法求解了复合岩石交界面上的界面黏结应力,提出软硬互层岩体的强度曲线。

综上可知,现有研究主要集中在同一类复合岩石的厚度比(黄彦华等,2014)、强度比(刘杰等,2014蒋明镜等,2020)、倾角(姚池等,2015郭东明等,2011)和胶结力对其力学性质的影响,对于不同材料组成的复合岩石的对比研究相对较少,且类似研究更多的是针对煤—岩复合(张泽天等,2012邓绪彪等,2012),可将该组合看作特殊的复合岩石,由于其软硬差距悬殊,针对性强,因此其结论并不能适用于强度相近的复合岩石。

基于此,本文选取砂岩、矽卡岩和蛇纹岩这3类典型岩石,以强度居中的蛇纹岩分别搭配强度较高的砂岩和强度较弱的矽卡岩,组成2组相互对照的复合岩石,通过单轴压缩试验,对2种复合岩石的失效模式和力学性质进行分析(高美奔等,2016王旭一等,2021刘泉声等,2020Xiao et al.,2020杜坤等,2021),以期为不同材料组成的复合岩石的稳定性分析提供参考。

1 室内试验

1.1 试样准备

砂岩、矽卡岩和蛇纹岩均取自冬瓜山铜矿。通过取芯抛光,将岩石分别制作成尺寸为ϕ50 mm×50 mm和ϕ50 mm×100 mm的圆柱体试样。组合试样由ϕ50 mm×50 mm的单岩试样经过室温干燥后垂直叠放,在接触面用环氧树脂进行胶结后组成。试样的平行度和表面平整度分别控制在±0.05 mm和±0.02 mm以内,组合试样接触角度保持为0°。为了保证试验研究的可靠性,通过波速检测的方法,选取纵波速度相近的试样用于试验。不同岩性岩石的基本物理性质见表1

表1   3种岩石物理性质

Table 1  Physical properties of the three rocks

岩石类型密度/(kg·m-3纵波波速/(m·s-1横波波速/(m·s-1泊松比
砂岩(Ss)3 801.233 950.430.220.22
矽卡岩(Sk)3 213.683 536.230.260.26
蛇纹岩(Spt)3 426.693 780.340.270.27

新窗口打开| 下载CSV


1.2 试验设备和方法

试验所用设备主要为Instron 1346,该装置由顶底座、支撑杆、应力杆以及控制和数据处理装置组成,如图1所示。

图1

图1   主要设备及试验装置图

Fig.1   Main equipment and test device diagram


试验分为单一岩石试验和组合岩石试验。其中,单一岩石试验分为砂岩、矽卡岩和蛇纹岩3组,每种岩石试样数不少于3个,3种岩石试样依次编号为Ss1~Ss3、Sk1~Sk3和Sw1~Sw3。组合岩石试验通过3种岩石的单轴压缩试验获得岩石的基本力学性质。组合岩石试验分为蛇纹石—矽卡岩和蛇纹石—砂岩2组,与单岩单轴压缩试验相同,每组至少有3个试样,依次编号为Spt-Sk1~Spt-Sk3和Spt-Ss1~Spt-Ss3,分别表示蛇纹石—矽卡岩和蛇纹石—砂岩组合岩石。在组合岩石试验中,将应变片粘贴在岩石表面,如图1所示,得到各类型岩石的轴向和横向应变。值得注意的是,应变片应按图1所示的方向进行粘贴。

2 结果和分析

2.1 应力—应变曲线

3种岩石的应力—应变曲线如图2所示,力学性质见表2。由图2可以看出,砂岩应力—应变曲线的峰值最大,其次为蛇纹岩,矽卡岩最小,说明砂岩抗压能力最强。矽卡岩应力—应变曲线上升阶段的斜率最大,蛇纹岩次之,砂岩最小,说明矽卡岩能够承受弹性变形的能力最大。

图2

图2   3种岩石的应力—应变曲线

Fig.2   Stress-strain curves of three types of rocks


表2   岩石的基本力学性质

Table 2  Basic mechanical properties of the rocks

岩石类型单轴压缩强度/MPa峰值应变弹性模量/GPa
砂岩87.410.6121.41
矽卡岩80.250.3733.81
蛇纹岩83.290.5025.86
蛇纹石—矽卡岩80.760.4226.01
蛇纹石—砂岩85.480.6023.43

新窗口打开| 下载CSV


此外,在3种岩石中,砂岩达到应变峰值时的应变大于其他2种岩石,破坏时的变形最大,能够承受变形的能力最大。复合岩石的应力—应变曲线如图3所示,由图3可知,2组复合岩石具有相似的变形特征,其中,蛇纹岩—砂岩的峰值更大,应变大,应力—应变曲线上升阶段的斜率更小。

图3

图3   复合岩石的应力—应变曲线

Fig.3   Stress-strain curves of composite rocks


岩石和复合岩石的应力—应变曲线可划分为4个阶段:(1)压密阶段,应力—应变曲线呈上凹型,此阶段几乎无裂纹产生;(2)弹性阶段,应力—应变曲线近似直线,其中弹性变形与微弹性裂隙稳定发展的临界点并不突出,随着荷载的增加,岩石内部开始产生微裂纹;(3)塑性阶段,应力达到屈服极限后,应力—应变曲线略微向下弯曲直至峰值,破裂不断发展直至岩石弯曲破坏;(4)破坏阶段,应力—应变曲线在峰值后具有显著的阶段跌落特征,表明复合岩石承载力随变形的增大迅速下降,直至完全失去承载能力。

2.2 单轴抗压强度

单轴抗压强度能够反映岩石承受抗压缩的能力。如图4所示,砂岩、蛇纹岩和矽卡岩单轴抗压强度分别为87.41,83.29,80.25 MPa,砂岩的单轴抗压强度最大,其次为蛇纹岩,矽卡岩最小,说明砂岩能够承受抗压缩的能力最强。复合岩石蛇纹岩—矽卡岩在应变值为0.42时的单轴抗压强度达到80.76 MPa,而蛇纹岩—砂岩在应变值为0.60时单轴抗压强度达到85.48 MPa。砂岩的单轴抗压强度比蛇纹岩高4.95%,当砂岩与蛇纹岩复合后,复合岩石的单轴抗压强度小于砂岩而大于蛇纹岩,变化率分别为2.63%和-2.21%;蛇纹岩的单轴抗压强度比矽卡岩高3.79%,当蛇纹岩与矽卡岩复合后,复合岩石的单轴抗压强度小于蛇纹岩而大于矽卡岩,相比蛇纹岩和矽卡岩,变化率分别为0.06%和 -3.04%。由此可提出猜想,若2种单一岩石的抗压强度分别为AC,复合岩石的抗压强度为B,则三者关系可表达为

A-BA+B-CC=A-CB

图4

图4   岩石单轴抗压强度

Fig.4   Uniaxial compressive strength of rocks


化简可得

B2=AC

图4中的试验数据相比,蛇纹岩—矽卡岩复合岩石的理论单轴抗压强度为85.33 MPa,与实际值的误差率为0.18%,而蛇纹岩—砂岩复合岩石的理论单轴抗压强度为81.76 MPa,与实际值的误差率为1.23%,可知接触面为0°的复合岩石的单轴抗压强度可由式(2)计算。

2.3 应变

应变可反映岩石受力过程中的变形情况。如图5所示,砂岩、蛇纹岩和矽卡岩的峰值应变分别为0.61、0.50和0.37,而复合岩石蛇纹岩—矽卡岩和蛇纹岩—砂岩的峰值应变分别为0.42和0.60。

图5

图5   岩石峰值应变

Fig.5   Peak strain of rocks


图6所示,当应力σ为0~10 MPa时,图6(a)的压密阶段相较于图6(b)几乎不存在,岩样初始裂隙的分布情况和发育情况对压密阶段曲线特征的影响占据主要地位,若初始裂隙过少,则压密阶段不存在。当岩样的全部初始裂隙在加载状态下闭合时,图中曲线由重合至发散,此时的应力值可作为起始应力值,这表示岩样开始进入弹性阶段,横向与轴向应变曲线均具有线性减小的趋势。当应力σ为30~40 MPa时,岩样的横向应变曲线偏离线性变化,而轴向应变保持线性增长,岩样进入裂隙不稳定拓展阶段,此时的应力值可作为破坏应力点。当应力σ为80~86 MPa时,岩样轴向应力加载至峰值强度,岩样的横向与轴向应变曲线均出现了非线性的变化特征。

图6

图6   峰值前复合岩石应变曲线

Fig.6   Strain curves of composite rocks before peak


2.4 弹性模量

图7所示,在弹性模量方面,矽卡岩的弹性模量最大,蛇纹岩次之,砂岩最小,说明矽卡岩能够承受弹性变形的能力最强。此外,在3种岩石中,砂岩的峰值应变大于其他2种岩石,破坏时的变形最大,能够承受变形的能力最强。

图7

图7   岩石弹性模量

Fig.7   Elastic modulus of rocks


2.5 复合岩石破坏模式

图8图9所示,在单轴压缩条件下,位于上部强度较低的岩石产生裂纹,并逐渐向接触面进行裂隙发育,呈单斜面贯通的剪切破坏。复合岩石试件接触面受到的轴向压应力所产生的横向张拉分力逐渐增大,但未达到下部较高强度岩石的最大拉应力临界值,因此接触面下部未破坏,只有少量的表皮脱离;复合岩石试件中2种岩石的变形并不同步,较低强度的岩石端率先发生破坏,裂纹贯穿岩体,而较高强度的岩石以及接触面没有发生破坏。

图8

图8   复合岩石破坏模式

(a)蛇纹岩—矽卡岩;(b)蛇纹岩—砂岩

Fig.8   Failure mode of composite rocks


图9

图9   复合岩石破坏模式示意图

(a)蛇纹岩—矽卡岩;(b)蛇纹岩—砂岩

Fig.9   Schematic diagram of failure modes of composite rocks


3 讨论

根据前人有关复合岩石强度特征的研究结果(尹光志等,2017刘晓云等,2017),假设单一岩样为均质、连续且各向同性,在单轴压缩条件下,可将单一岩样视为理想的弹簧,则复合岩石可视为2个弹簧串联形成的弹性模型,如图10所示。则应力与应变的关系符合胡克定律:

σ=Eε

式中:σ为试验设备施加的应力;E为复合试样的弹性模量;ε为应变。

图10

图10   理想弹簧串联模型

Fig.10   Ideal model of series spring


试验中,岩样①的变形量为Δh1,岩样②的变形量为Δh2,复合试样的总变形量为Δh,则有

Δh=Δh1+Δh2

若复合试样中,岩样①和岩样②的体积占比分别为v和1-v,则有

σE1vh+σE21-vh=σEh

而本次试验中岩样①和岩样②体积占比相同,由此可得:

E=hvhE1+(1-v)E2=21E1+1E2

同样也可得:

2ε=ε1+ε2

图5中各岩石的应变值可知,矽卡岩、砂岩和蛇纹岩的峰值应变分别为0.37、0.61和0.50。蛇纹岩—矽卡岩的理论峰值应变为0.44,试验峰值应变为0.42,误差为4.76%;蛇纹岩—砂岩的理论峰值应变为0.56,试验峰值应变为0.60,误差为6.67%。

图7中各岩石的弹性模量可知,矽卡岩、砂岩和蛇纹岩的弹性模量分别为33.81,21.41,25.86 GPa;蛇纹岩—砂岩的理论弹性模量为29.30 GPa,试验弹性模量为26.01 GPa;而蛇纹岩—矽卡岩的理论弹性模量为23.43 GPa,试验弹性模量为19.72 GPa。2组复合岩石的弹性模量均呈现为理论值大于试验值的规律。这是因为在理论情况下,复合岩石材料占比相同,均质且各向同性,其变化率稳定,且未考虑接触面胶结,而实际试验中,应力稳定时弱端岩石占比偏小导致理论值偏大,同时,岩石组分的非均质性、层间效应和岩样之间的差异也会对试验结果产生影响。其中,具体的影响因子和对应的影响程度有待进一步研究。

4 结论

(1)在单轴压缩条件下,复合岩石与单一岩石的破坏模式类似,均具有特征明显的压密阶段、弹性阶段、塑性阶段和破坏阶段。复合岩石中岩石强度较低的部分首先发生破坏,初始裂纹的萌生位置和发展模式直接决定着岩样的最终破坏形态。

(2)复合岩石与其所组成的单一岩石之间的抗压强度数值关系为B2=AC

(3)复合岩石可被视为2个弹簧串联形成的弹性模型,且其抗压强度、弹性模量和峰值应变存在可推导的数值关系。

全球地质矿产信息网)

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-5-778.shtml

参考文献

Chen YulongZhang YuningLi Kebinet al2017.

Distinct element numerical analysis of failure process of interlayered rock subjected to uniaxial compression

[J].Journal of Mining and Safety Engineering,344):795-816.

Deng XubiaoHu HaijuanXu Ganget al2012.

Numerical simulation for burst failure of two-body rock structure

[J].Journa of Mining and Safety Engineering,296):833-839.

Dong JiaxingXu GuangliLi Zhipenget al2014.

Classification of failure modes and controlling measures for surrounding rock of large-scale caverns with high geostress

[J].Chinese Journal of Rock Mechanics and Engineering,3311):2161-2170.

Du KunYang SonggeSu Ruiet al2021.

Experimental study on strength and fracture characteristics of hard rock under different stress conditions

[J].Gold Science and Technology,293):372-381.

Fu PengQi XianyinWang Shengwei2022.

Experimental study on damage evolution law of layered composite rock based on acoustic emission

[J].Science Technology and En-gineering,2219):8431-8438.

Gao MeibenLi TianbinMeng Luboet al2016.

The method to identify characteristic stresses of rock in different stages during failure process

[J].Chinese Journal of Rock Mechanics and Engineering,35Supp.2):3577-3588.

Guo DongmingZuo JianpingZhangYiet al2011.

Research on strength and failure mechanism of deep coal-rock combination bodies of different inclined angles

[J].Rock and Soil Mechanics,325):1333-1339

Huang YanhuaYang ShengqiLiu Xiangru2014.

Experimental and numerical study on the mechanical characteristics of rock-like materials

[J].Journal of Experimental Mechanics,292):239-249.

Jia Mingkui2007.

Research on roof falling mechanism of deteriorative strata combination supported by bolts

[J].Rock and Soil Mechanics,287):1343-1347.

Jiang MingjingWang HuaningLi Guangshuaiet al2020.

DEM investigation on tunnel excavation of deeply-situated composite rock mass with different strength ratios

[J].Chinese Journal of Geotechnical Engineering,42Supp.2):20-25.

Li YuanQiao LanSui Zhiliet al2012.

Strength analysis of rock material under the brittle shear failure mode

[J].Journal of University of Science and Technology Beijing,3412):1364-1370.

Liu HanxiangZhou YifeiLi Xin2021.

Shaking table test of dynamic responses of a layered complex rock slope under earthquake

[J].Chinese Journal of Rock Mechanics and Engineering,404):676-689.

Liu JieWang EnyuanSong Dazhaoet al2014.

Effects of rock strength on mechanical behavior and acoustic emission characteristics of samples composed of coal and rock

[J].Journal of China Coal Society,394):685-691.

Liu QuanshengWang Zhongwei2020.

Review of numerical modeling based on digital image processing for rock mechanics applications

[J].Chinese Journal of Rock Mechanics and Engineering,39Supp.2):3286-3296.

Liu XiaoyunYe YichengWang Qihuet al2017.

Mechanical properties of similar material specimens of composite rock masses with different strengths under uniaxial compression

[J].Rock and Soil Mechanics,38Supp.2):183-190.

Wang XuyiHuang ShulingDing Xiuliet al2021.

Study on the effect of inhomogeneous bedding plane on the mechanical properties of uniaxial compression of layered rock mass

[J].Rock and Soil Mechanics,422):581-592.

Xiao PLi D YZhao G Y2020.

Mechanical properties and failure behavior of rock with different flaw inclinations under coupled static and dynamic loads

[J].Journal of Central South University,2710):2945-2958.

[本文引用: 1]

Xing KekeWan ZhijunZhang Hongweiet al2020.

Experimental study on strength and deformation characteristics of layered composite sandstone

[J].Mining Research and Development,407):49-53.

Yang YoukuiJiang Weimin1990.

A failure criterion of composite rock

[J].Journal of Chongqing University (Natural Science Edition),(6):19-25.

Yao ChiLi YaoJiang Qinghuiet al2015.

Mesoscopic model of failure process of interlayered rock compression

[J].Chinese Journal of Rock Mechanics and Engineering,348):1542-1551.

Yin GuangzhiLi XingLu Junet al2017.

A failure criterion for layered composite rock under true triaxial stress conditions

[J].Chinese Journal of Rock Mechanics and Engineering,362):261-269.

Zhang ZetianLiu JianfengWang Luet al2012.

Effects of combination mode on mechanical properties and failure characteristics of the coal-rock combinations

[J].Journal of China Coal Society,3710):1677-1681

Zhao GuangmingMa WenweiMeng Xiangrui2015.

Damage modes and energy characteristics of rock-like materials under dynamic load

[J].Rock and Soil Mechanics,3612):3598-36053624.

陈宇龙张宇宁李科斌2017.

单轴压缩下软硬互层岩石破裂过程的离散元数值分析

[J].采矿与安全工程学报,344):795-816.

[本文引用: 1]

邓绪彪胡海娟徐刚2012.

两体岩石结构冲击失稳破坏的数值模拟

[J].采矿与安全工程学报,296):833-839.

[本文引用: 1]

董家兴徐光黎李志鹏2014.

高地应力条件下大型地下洞室群围岩失稳模式分类及调控对策

[J].岩石力学与工程学报,3311):2161-2170.

[本文引用: 1]

杜坤杨颂歌苏睿2021.

不同应力条件下硬岩强度与破裂特性试验研究

[J].黄金科学技术,293):372-381.

[本文引用: 1]

付鹏亓宪寅王胜伟2022.

基于声发射的层状复合岩石损伤演化规律实验研究

[J].科学技术与工程,2219):8431-8438.

[本文引用: 1]

高美奔李天斌孟陆波2016.

岩石变形破坏各阶段强度特征值确定方法

[J].岩石力学与工程学报,35增2):3577-3588.

[本文引用: 1]

郭东明左建平张毅2011.

不同倾角组合煤岩体的强度与破坏机制研究

[J].岩土力学,325):1333-1339.

[本文引用: 1]

黄彦华杨圣奇刘相如2014.

类岩石材料力学特性的试验及数值模拟研究

[J].实验力学,292):239-249.

[本文引用: 1]

贾明魁2007.

岩层组合劣化型冒顶机制研究

[J].岩土力学,287):1343-1347.

[本文引用: 1]

蒋明镜王华宁李光帅2020.

深部复合岩体隧道开挖离散元模拟

[J].岩土工程学报,42增2):20-25.

[本文引用: 1]

李远乔兰隋智力2012.

岩石材料脆性剪切破坏模式下的强度分析

[J].北京科技大学学报,3412):1364-1370.

[本文引用: 1]

刘汉香周逸飞李欣2021.

层状复合岩体边坡动力特性及地震响应特性的振动台试验研究

[J].岩石力学与工程学报,404):676-689.

[本文引用: 1]

刘杰王恩元宋大钊2014.

岩石强度对于组合试样力学行为及声发射特性的影响

[J].煤炭学报,394):685-691.

[本文引用: 1]

刘泉声王中伟2020.

基于数字图像处理的岩石数值模拟研究进展

[J].岩石力学与工程学报,39增2):3286-3296.

[本文引用: 1]

刘晓云叶义成王其虎2017.

单轴压缩下不同强度组合复合岩体相似材料试件力学特性研究

[J].岩土力学,38增2):183-190.

[本文引用: 2]

王旭一黄书岭丁秀丽2021.

层状岩体单轴压缩力学特性的非均质层面影响效应研究

[J].岩土力学,422):581-592.

[本文引用: 1]

邢轲轲万志军张洪伟2020.

层状组合砂岩强度及变形特性试验研究

[J].矿业研究与开发,407):49-53.

[本文引用: 1]

阳友奎蒋为民1990.

复合岩石的破坏准则

[J].重庆大学学报(自然科学版),(6):19-25.

[本文引用: 1]

姚池李姚姜清辉2015.

应力作用下软硬互层岩石破裂过程的细观模拟

[J].岩石力学与工程学报,348):1542-1551.

[本文引用: 1]

尹光志李星鲁俊2017.

真三轴应力条件下层状复合岩石破坏准则

[J].岩石力学与工程学报,362):261-269.

[本文引用: 1]

张泽天刘建锋王璐2012.

组合方式对煤岩组合体力学特性和破坏特征影响的试验研究

[J].煤炭学报,3710):1677-1681.

[本文引用: 1]

赵光明马文伟孟祥瑞2015.

动载作用下岩石类材料破坏模式及能量特性

[J].岩土力学,3612):3598-36053624.

[本文引用: 1]

/