img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2022, 30(6): 835-847 doi: 10.11872/j.issn.1005-2518.2022.05.186

矿产勘查与资源评价

万古金矿中碳质物的成因及其与金成矿的关系

张胜伟,1,2, 邓腾,1,2, 许德如,1,2,3, 周岳强4, 董国军4, 李增华1,2, 马文1,2, 许可1,2, 海颜1,2

1.东华理工大学核资源与环境国家重点实验室,江西 南昌 330013

2.东华理工大学地球科学学院,江西 南昌 330013

3.东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013

4.湖南省地质矿产勘查开发局402地质队,湖南 长沙 410014

Genesis of Carbonaceous Material in the Wangu Gold Deposit and Its Relationship with Gold Mineralization

ZHANG Shengwei,1,2, DENG Teng,1,2, XU Deru,1,2,3, ZHOU Yueqiang4, DONG Guojun4, LI Zenghua1,2, MA Wen1,2, XU Ke1,2, HAI Yan1,2

1.State Key Laboratory of Nuclear Resources and Environment, East China University of Technology, Nanchang 330013, Jiangxi, China

2.School of Earth Sciences, East China University of Technology, Nanchang 330013, Jiangxi, China

3.Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, Jiangxi, China

4.No. 402 Geological Party, Bureau of Geology and Mineral Resources Exploration and Development of Hunan Province, Changsha 410014, Hunan, China

通讯作者: 邓腾(1990-),男,湖南怀化人,讲师,从事地球化学研究工作。dengteng2015@gmail.com许德如(1966-),男,湖南岳阳人,教授,从事大地构造学与成矿学研究工作。xuderu@gig.ac.cn

收稿日期: 2021-11-30   修回日期: 2022-03-02  

基金资助: 国家自然科学基金项目“江南造山带万古金矿床成矿流体活动的精细研究”.  42002090
“江南古陆金(多金属)大规模成矿的机理研究”.  41930428

Received: 2021-11-30   Revised: 2022-03-02  

作者简介 About authors

张胜伟(1998-),男,山东郯城人,硕士研究生,从事金矿勘查研究工作shengweizhang52@gmail.com , E-mail:shengweizhang52@gmail.com

摘要

万古金矿位于江南造山带中部,是该成矿带最具代表性的金矿床之一。万古金矿的赋矿围岩和矿石中可见大量碳质物(CM),然而碳质物的类型、成因及其与金成矿的关系仍不明确。通过进行系统的岩相学和激光拉曼光谱分析,发现万古金矿有3种类型的碳质物(CM1、CM2和CM3)。其中,CM1(T=507~613 ℃)呈粒状,分布在石英和云母中;CM2(T=390~470 ℃)呈层状,分布在黄铁矿和毒砂等矿物中;CM3(T=240~355 ℃)与石英和黄铁矿等热液矿物共生,且其形成温度与成矿温度相近。由此推断,CM1和CM2可能是变质成因,而CM3可能是热液成因。通过硫化物LA-ICP-MS分析,认为与CM2相关的黄铁矿更富Au和As。结合前人研究,认为万古金矿成矿前形成的层状CM2可作为还原剂,与含矿热液中金的络合物发生反应,致使金沉淀;CM3与黄铁矿共同沉淀,也有利于金成矿作用。

关键词: 碳质物(CM) ; 拉曼光谱 ; 造山型金矿 ; 硫化物LA-ICP-MS Mapping ; 黄铁矿 ; 万古金矿 ; 江南造山带

Abstract

The Wangu gold deposit,located in the central Jiangnan orogenic belt,is one of the most repre-sentative gold deposits.The orebodies are mainly hosted in the Neoproterozoic Lengjiaxi Group.Large amounts of carbonaceous material(CM) occurs in the host rocks and ores.However,the types and genesis of CM in the deposit and its relationship with gold mineralization are still unclear,which restricts the understanding of the precipitation mechanism of mineralization elements and the deep prospecting and exploration work. Systematic petrographic and laser Raman spectroscopic analyses of CM in surrounding rocks and ores show that there are three types of CM in the deposit,namely CM1,CM2 and CM3.Among them,CM1(T=507~613 ℃) is granular with small particles,which are distributed in quartz and micamineral particles or pores,in disseminated distribution,smooth edges and corners and good roundness,which may be the source of debris.CM2(T=390~470 ℃) is layered and distributed around minerals such aspyrite and arsenopyrite or in pyrite.CM3(T=240~355 ℃) coexists with hydrothermal minerals such as siderite,quartz and pyrite,and the formation temperature is close to the metallogenic temperature,surrounded by a large amount of pyrite,which is mainly produced in vein form.Consequently,CM1 and CM2 may have been formed by pre-ore metamorphism,which is of metamorphic origin,while CM3 may be the product of hydrothermal process,which is of hydrothermal origin.Sulfide LA-ICP-MS Mapping and trace element analyses show that the Au-As coupling phenomenon of sulfide in CM2 is wonderful.The pyrite rim is more enriched in Au,As,Co and Ni than the core,and poor in Bi,Pb,and Sb.In the vicinity of pores in the core of pyrite,most of them have abnormally high Au.The location of abnormally high Au,As,Co,and Ni is very similar,forming a growth ring of pyrite.The pyrite grains associated with both CM2 and CM3 contain gold,but those related to CM2 are richer in Au and As,and poor in trace elements such as Cu,Co,Ni,Bi,Pb.The sulfide of CM2 have no Te,however,the content of CM3 are less.Combining with previous studies,pre-ore layer CM2 can react with Au-bearing fluid as efficient reductant to prompt Au precipitation.However,hydrothermal CM3 together with pyrite precipitating from ore-bearing fluid,was also favorable to gold mineralization.

Keywords: carbonaceous material(CM) ; Raman spectra ; orogenic gold deposits ; sulfide LA-ICP-MS Mapping ; pyrite ; Wangu gold deposit ; Jiangnan orogenic belt

PDF (8800KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

张胜伟, 邓腾, 许德如, 周岳强, 董国军, 李增华, 马文, 许可, 海颜. 万古金矿中碳质物的成因及其与金成矿的关系[J]. 黄金科学技术, 2022, 30(6): 835-847 doi:10.11872/j.issn.1005-2518.2022.05.186

ZHANG Shengwei, DENG Teng, XU Deru, ZHOU Yueqiang, DONG Guojun, LI Zenghua, MA Wen, XU Ke, HAI Yan. Genesis of Carbonaceous Material in the Wangu Gold Deposit and Its Relationship with Gold Mineralization[J]. Gold Science and Technology, 2022, 30(6): 835-847 doi:10.11872/j.issn.1005-2518.2022.05.186

碳质物(Carbonaceous Material,简称CM)是指具有可溶—不可溶性大分子结构的碳—氢—氧化合物,为成分不均一的黑色固体物质(Kříbek et al.,2015)。目前认为碳质物主要包括有机和无机2种来源,其中前者为生物沉积在成岩—构造—变质作用中形成的(Beny-Bassez et al.,1985),而后者主要由含碳热液中的CO2和CH4等烃气发生化学反应沉淀形成(Leventhal et al.,1987Lewan et al.,1986)。许多大型金矿床中含有大量的碳质物,如新西兰Macraes金矿、我国西秦岭大桥金矿和澳大利亚Cosmo Howley矿床等(Groves et al.,2003Hu et al.,2015Wu et al.,2020卢焕章等,2018王庆飞等,2019王义天等,2020)。前人研究表明,碳质物与金成矿的关系密切,主要为矿质元素沉淀的强效还原剂和吸附剂(Cox,1995),而成矿期的碳质物与硫化物同时沉淀,可破坏含金络合物的稳定性,从而促进金矿化(Craw et al.,2015Hu et al.,2017)。

位于华南扬子板块东南缘的江南造山带产有众多金(多金属)矿床,已探明和预测的金资源量达970 t以上(Zhang et al.,2019Zhou et al.,2021)。前人研究表明,该区发育较多含碳质板岩和千枚岩,为金矿体的重要赋矿围岩;这些含碳地层的形成与韧性剪切变形密切相关,碳质的含量往往与其经历的区域构造运动强度成正比(Xu et al.,2017)。同时,含矿石英脉中碳质含量也较高,推测其可能为热液活动的产物(Xu et al.,2017陈振亚等,2019)。这些现象表明碳质物在江南造山带金成矿过程中可能具有重要的作用。

然而,目前对江南造山带金矿床围岩中碳质物的研究尚未引起足够重视,碳质物结构、形貌及其对金成矿的贡献仍不明确。因此,本文选取万古金矿作为研究区,厘定不同类型碳质物的特征及其对金富集的影响。这不仅有助于正确理解江南造山带内大规模金(多金属)矿床的成矿机制,而且为金矿勘探工作提供了科学依据。

1 区域地质背景

1.1 江南造山带区域地质特征

我国南方有2个主要的构造单元,即扬子板块和华夏板块。扬子板块与华夏板块在新元古代碰撞形成呈反“S”状弧形展布的陆—陆碰撞带——江南造山带,该带位于扬子板块东南缘(图1)(Deng et al.,2017Gan et al.,2020Zhong et al.,2017)。该区产出数百个金(多金属)矿床,金矿资源总量超过970 t(Deng et al.,2020)。江南造山带前寒武纪基底以新元古代变质岩为主,代表性地层为冷家溪群和板溪群,在新元古代—早古生代时期均发生浅变质作用(Wang et al.,2016Xu et al.,2007)。该区在新元古代—中生代晚期经历多期构造运动和岩浆活动,形成了一系列NE-NNE向隆起与伸展盆地相间分布的盆岭构造(Pirajno et al.,2002Wang et al.,2020)。该区的岩浆岩主要形成于新元古代、早古生代、早中生代和晚中生代,其中晚中生代岩浆岩发育最为广泛(Charvet et al.,1996)。

图1

图1   湘东北地区区域地质图(据Deng et al.,2020修改)

A-汨罗断陷盆地;B-幕阜山—望湘断隆;C-长沙—平江断陷盆地;D-连云山—衡阳断隆;E-醴陵—攸县断陷盆地1.第四系;2.白垩—古近纪砂岩、砾岩和杂砂岩;3.中泥盆—中三叠世碳酸盐岩、砂岩和泥岩;4.震旦—志留纪砂岩、页岩、砾岩和板岩;5.新元古代板溪群碎屑沉积岩;6.新元古代冷家溪群浅变质浊积岩;7.新太古代—古元古代 (?)连云山岩群和涧溪冲岩群角闪岩相—麻粒岩相变质岩;8.燕山期花岗岩;9.印支期花岗岩;10.加里东期花岗岩;11.新元古代花岗岩;12.断层;13.金矿床或矿化点;14.韧性剪切带;15.Co矿床;16.Cu-Pb-Zn-Au矿床;17.图2区域

Fig.1   Regional geological map of northeastern Hunan Province(modified after Deng et al.,2020


1.2 湘东北地区区域地质特征

位于江南造山带中段的湘东北地区,主要地层为新元古代冷家溪群、板溪群和白垩系沉积岩(Xu et al.,2007)。半深海—深海盆地平原—海底扇中的低密度蚀流沉积组成的冷家溪群,自下而上为雷神庙组、黄浒洞组、小木坪组和坪原组,岩性主要为绢云母板岩、粉砂质板岩、变质粉砂岩和变质细砂岩。冷家溪群被板溪群覆盖,呈现角度不整合,板溪群包括马底驿组和五强溪组,主要由砾岩、砂岩、凝灰岩和板岩组成(Deng et al.,2017Zhang et al.,2018)。白垩系可划分为戴家坪组和东塘组,岩性主要为砂岩、砾岩和杂砂岩(Zou et al.,2018)。

该区具有NE向盆岭构造特征,从西向东分别为新宁—灰汤、长沙—平江和醴陵—横洞3条NNE-NE向深大走滑断裂,将早期伸展盆地和花岗岩山岭间隔开(Zhou et al.,2021)。此外,还有3条大致呈EW走向的韧性剪切带和一系列小规模NWW向断裂。

湘东北地区具有新元古代—中生代晚期的花岗岩(图1)(Deng et al.,2020Guan et al.,2014)。其中,晚中生代S型花岗岩(约160~130 Ma)最为常见。这些花岗岩体一般沿着NE-SW走向的断裂分布,如沿长江—平江断裂形成的连云山岩体(Guan et al.,2014Zhang et al.,2018)。此外,该区还发育有大量晚期(136~83 Ma)基性和双峰性火山岩。这些S型花岗岩和基性岩被解释为形成于伸展构造环境。

该区发育多个大型金矿,主要有万古、黄金洞、沃溪和雁山寺金矿等,金矿床一般分布在晚中生代花岗岩和NE向区域性断裂带附近,矿床围岩蚀变类型繁多,包括绢云母化、碳化、硅化、碳酸盐化、绿泥石化和黄铁矿化等(Deng et al.,2020Li et al.,2018Ma et al.,2021Xu et al.,2017)。主要的矿化类型为石英脉型、蚀变板岩型和矿化构造角砾岩型(Ma et al.,2021Zhou et al.,2021)。矿石矿物主要有黄铁矿、毒砂、辉锑矿、方铅矿、闪锌矿、黄铜矿和少量白钨矿,脉石矿物主要有石英、方解石、菱铁矿、白云石和绢云母。金矿物以自然金为主,在毒砂、黄铁矿和黄铜矿中含有一些晶格金。

前人研究表明,该区发育较多含碳质板岩和千枚岩,为金矿体的重要赋矿围岩;这些含碳地层的形成与韧性剪切变形密切相关,碳质的含量往往与其经历的区域构造运动强度成正比(Xu et al.,2017)。同时,含矿石英脉中也具有较高的碳质含量,推测可能为热液活动的产物(Xu et al.,2017陈振亚等,2019)。

2 矿床地质特征

万古金矿床位于幕阜山—望湘岩体的隆起部位(图1),出露地层主要为新元古代冷家溪群坪原组以及以角度不整合覆盖其上的白垩纪戴家坪组和第四系(图2)。冷家溪群坪原组是该矿床的主要含金地层,由变质砂岩和粉砂岩组成,夹紫色薄层千枚岩、砂质板岩,地层走向NW-NWW,倾角中等(40°~60°)(图2图3)(毛景文等,1997Deng et al.,2017)。

图2

图2   万古金矿地质图(据毛景文等,1997修改)

1.第四系;2.白垩纪戴家坪组;3.新元古代坪原组第三段第二岩性亚段;4.新元古代坪原组第三段第一岩性亚段;5.新元古代坪原组第二段第二岩性亚段;6.新元古代坪原组第二段第一岩性亚段;7.新元古代坪原组第一段;8.矿体及编号;9.断裂及编号

Fig.2   Geological map of the Wangu gold deposit (modified after Mao et al.,1997


图3

图3   万古金矿矿区剖面图(据毛景文等,1997修改)

1.新元古代坪原组第二段第二岩性亚段;2.新元古代坪原组第二段第一岩性亚段;3.含金石英脉;4.金品位/厚度;5.层内断裂带;6.钻孔;7.产状

Fig.3   Cross section of the Wangu gold deposit (modified after Mao et al.,1997


万古金矿区褶皱不发育。与区域上的NW(W)断裂的产状相同,矿区内的NW(W)断裂倾向NE-NNE、倾角5°~60°,与地层产状相近,为层间断裂(图2)。该断裂可能是早期区域褶皱引起冷家溪群不同板岩之间发生层间滑动的结果。该断裂可能形成于加里东期,且在燕山期受到区域构造应力的影响而重新活化,并经历了从韧性变形向脆性变形的转变(傅昭仁等,1999肖拥军等,2004)。

万古金矿主要有3种矿石类型,以石英脉型和蚀变岩型为主,构造角砾岩型次之。毒砂和黄铁矿是最主要的矿石矿物,还含有少量的方铅矿、闪锌矿、辉锑矿、黄铜矿、自然金和车轮石等;脉石矿物主要为石英和方解石,还有少量的绢云母、绿泥石和白云母(温志林等,2016毛景文等,1997)。与成矿有关的热液过程可划分为5个阶段:(1)石英(Q1)—碳酸盐;(2)白钨矿—石英(Q2);(3)毒砂—黄铁矿—石英(Q3);(4)多金属硫化物—石英(Q4);(5)石英(Q5)—碳酸盐阶段(Deng et al.,2017)。其中,金矿化主要发生在第三、四阶段。

前人研究表明,部分地层富铁,受热液作用形成碳酸盐—绢云母化并表现出褪色化特征,为有利于成矿的化学圈闭(Ma et al.,2021)。此外,矿区发育多层含碳板岩,也具有强烈的矿化,但是没有热液蚀变褪色特征,且该地层在深部延伸稳定,与金矿体在空间上密切相关。

3 试验方法和技术

3.1 岩相学

岩石样品制备成薄片,利用光学显微镜和扫描电镜(SEM)观察岩石特征。在东华理工大学核资源与环境国家重点实验室中,采用Leica DM2700P显微镜对样品进行岩相学观察,利用蔡司Sigma 300扫描电镜进行BSE和能谱分析。室内温度保持在(20±2)℃,同时保持湿度小于80%,仪器主机部分在运行期间一直保持高真空状态(刘钦甫等,2018)。

3.2 拉曼光谱

激光拉曼光谱采用英国生产的Reinshaw-2000显微共焦激光拉曼光谱仪,激发激光波长为532 nm,激光功率为15 mW,激光束斑最小直径为4 μm,光谱分辨率1~2 cm-1。随着石墨化程度的增加,G峰比D1峰的强度更强,这是由于结构有序度会随着温度的升高而增加,这也是地热计的基础。CM中的结构有序度由2个参数表示:R1(无序峰与有序峰的高度之比)和R2(无序峰相对于有序峰和无序峰的面积之比)。其计算公式为

R1=D1G
R2=D1G+D1+D2

Beyssac et al.(2002a)证明了CM的结晶度与变质压力无关,而与变质峰温度密切相关,认为R2比率在变质温度计中扮演着重要的角色,因此他们的温度计是根据参数R2与变质温度之间的线性关系而得出的,表示为:

T(℃)= -445R2 + 641

另一种是Rahl et al.(2005)提出的一种基于参数R1R2的修正温度计,它适用于100~650 ℃的温度范围,其可信度大于90%,表示为

T(℃)=-737.3+320.9R1-1 067R2-80.3638R12

3.3 硫化物LA-ICP-MS Mapping

广州拓岩测试分析技术有限公司采用NWR 193nm ArF 准分子激光剥蚀与iCAP RQ(ICP-MS)耦合,测定黄铁矿中的微量元素。ICP-MS使用NIST 610标准玻璃进行调整,易产生低氧化物生产率。激光功率为5 J/cm2,频率为30 Hz,束斑尺寸为5 μm。进行2块标准块(一个NIST 610和一个GSE-2G)和一个MASS-1硫化物标准分析之后,再进行所选的黄铁矿分析,选取的微量元素为Au、As、Bi、Co、Ni、Cu、Se、Pb和Te。

4 研究结果

4.1 CM的特征

详细的光学和扫描电镜岩相学观察显示3种不同形态和矿物组合的CM(CM1~CM3,图4)。其中,不规则CM1主要产于石英和云母矿物颗粒中或其间隙,呈浸染状分布,颗粒较小,粒径在5~25 μm不等,棱角不明显,磨圆度较好。CM2以层状形式出现,主要分布在黄铁矿和毒砂等矿物周围或黄铁矿的孔隙中,与其相关的黄铁矿呈他形,粒径在70 μm至2 cm不等,自然金同样分布在黄铁矿的孔隙中。CM3以石英和菱铁矿为基底,不均匀分布于其上,周围分布大量的黄铁矿,该黄铁矿主要以脉状形式产出,脉宽为60~300 μm不等。

图4

图4   万古金矿的野外、手标本、扫描电镜和显微照片

(a)碳质板岩与石英脉互层;(b)硫化物在碳质板岩和石英的边界分布;(c)扫描电镜显示分布在石英和云母的CM1颗粒;(d)扫描电镜显示自然金赋存在黄铁矿孔隙中;(e)层状CM2周围发育黄铁矿和毒砂等矿物(反射光);(f)CM3在石英和菱铁矿等矿物的周围分布(反射光);Qz-石英;Mca-云母;Py-黄铁矿;Sd-菱铁矿;Rt-金红石;Apy-毒砂;Au-金

Fig.4   Field,hand specimen,scanning electron microscope and micrograph of Wangu gold deposit


4.2 拉曼光谱特征

不同类型CM的拉曼光谱特征如图5所示。其中,CM的拉曼光谱有2个明显的特征峰,分别是无序峰(D1峰)和有序峰(G峰),此外还有一个峰值不明显的D2峰,是由双震动拉曼散射形成的。在CM1的特征峰中,G峰比D1峰的强度更高,D2峰较明显,G峰的半高宽较大,表明CM1结构有序性更强。相比CM1,CM2的D1峰明显升高,D2峰突出明显,G峰的强度相对降低,说明CM2结构有序性降低。CM3的特征峰中,G峰比D1峰的强度更低,D2峰不明显,G峰的半高宽较小,表明CM3结构具有无序性。本文收集了不同类型的CM拉曼光谱数据,并计算了CM形成的温度,详见表1

图5

图5   不同类型CM的拉曼光谱分析

Fig.5   Raman spectrum analysis of different types of CM


表1   不同类型CM的拉曼光谱参数特征

Table 1  Raman spectral parameter characteristics of different types of CM

CM 类型样品ID

D1 峰

/cm-1

D1 峰面百

分比/%

G 峰/cm-1

G 峰面百

分比/%

D2 峰

/cm-1

D2 峰面百

分比/%

R1R2T/℃
Beysac方法Rahl方法
CM1A-1279.9316.021 876.1679.81128.764.170.150.16569.72612.48
A-2387.4722.542 180.1368.81218.718.650.180.23540.70551.29
A-3663.2123.443 845.8968.33393.848.220.170.23536.67540.10
A-4100.5126.59498.1666.1448.777.260.200.27522.66515.02
A-5696.3729.302 494.1063.97340.136.730.280.29510.61507.98
CM2B-1306.3739.39562.8453.83110.936.780.540.39465.70467.84
B-2216.1238.52502.6855.6475.345.840.430.39469.59449.40
B-3261.8848.37328.3144.3981.657.240.800.48425.75426.03
B-443.6248.7856.4816.8243.9034.400.770.49423.93416.72
B-5148.8956.15138.0737.9232.915.931.080.56391.13390.77
CM3C-12 911.9665.561 628.8533.30164.861.151.790.66349.28354.67
C-2391.2769.13166.3529.3730.431.502.350.69333.39309.90
C-3226.1670.89108.8427.9817.021.142.080.71325.56300.77
C-4124.3169.9652.5628.3610.421.682.370.70329.69300.29
C-5512.7575.11210.6821.9264.382.972.430.75306.75240.82

注:“-”代表低于检测限;Beysac和Rahl方法分别参考Beyssac et al.(2002a)Rahl et al.(2005)

新窗口打开| 下载CSV


4.3 硫化物LA-ICP-MS Mapping特征

硫化物LA-ICP-MS Mapping 结果(图6)显示,CM2中的硫化物Au-As耦合现象非常明显,黄铁矿边缘相较核部更加富集Au、As、Co和Ni,贫Bi、Pb和Sb。在黄铁矿的核部有孔隙的附近,大多出现Au含量异常高的现象。Au、As、Co和Ni含量异常高的位置非常相似,形成了黄铁矿的生长环带。黄铁矿核部出现Bi、Pb和Sb的富集,可能具有矿物包裹体。相比CM2,CM3中的硫化物金含量明显降低。如图7所示,CM3的黄铁矿核部还有未被溶蚀部分位于边缘,相比黄铁矿的边部,黄铁矿核部缺乏Au、As、Co、Ni、Bi、Pb和Sb微量元素。硫化物LA-ICP-MS微量元素分析结果(图8表2)显示,与CM2相关的硫化物更富Au和As,贫Cu、Co、Ni、Bi、Pb、Sb和Se,且CM2的硫化物没有Te,而CM3含量较少。详见表2

图6

图6   CM2中硫化物LA-ICP-MS Mapping

注:选取元素为Au、As、Cu、Bi、Co、Ni、Pb和Sb;以每秒计数(cps)

Fig.6   LA-ICP-MS mapping of sulfide in CM2


图7

图7   CM3中硫化物LA-ICP-MS Mapping

注:选取元素为Au、As、Cu、Bi、Co、Ni、Pb和Sb;以每秒计数(cps)

Fig.7   LA-ICP-MS Mapping of sulfide in CM3


图8

图8   不同类型CM中硫化物的微量元素浓度对比

注:黄铁矿中金的饱和线据Reich et al.(2005)

Fig.8   Comparison of trace element concentrations of sulfides in different types of CM

CO2+CH4=2C+2H2O (5)


表2   不同类型CM中黄铁矿的LA-ICP-MS微量元素分析结果

Table 2  LA-ICP-MS trace element analysis results of pyrite in different types of CM(×10-6

CM类型编号矿物AuAsSeCoNiCuSbTePbBiCo/Ni
CM22-1Py31.5648386.85-75.86165.25117.5063.88-67.760.490.46
2-2Py27.3536730.261.03162.38927.5944.0986.25-253.471.850.18
2-3Py40.2438000.63-253.36601.6130.7161.51-60.030.550.42
2-4Py34.2235014.360.8710.0079.1063.5882.53-36.980.100.13
2-5Py9.4029676.760.783.0435.2511.3235.41-38.560.090.09
CM33-1Py0.831846.1833.783013.17482.07241.14519.9017.871381.0623.956.25
3-2Py0.954223.6946.25786.321186.64194.92379.2510.451278.5411.960.66
3-3Py1.162061.7338.10517.69640.46173.19327.439.53973.7312.460.81
3-4Py0.52112.8621.8918.6723.24256.41287.11-673.515.470.80
3-5Py0.56141.1520.95158.32129.73206.05302.971.32982.055.891.22
检测限0.032.070.680.650.370.350.240.140.0020.02

新窗口打开| 下载CSV


5 讨论

5.1 不同类型CM的特征

碳质物为含有CO和(或)CH键的富碳物质(Lehmann et al.,2007),广泛发育于多种地层和矿体中。前人研究表明,金矿区的沉积—变质岩中通常含有大量有机来源的碳质物(Mossman,1999),构造变形—变质过程中温度的升高使得地层中原生有机质的结构发生转变,使得低结晶度的碳质物通过石墨化过程转变为高结晶度的碳质物碎屑(Teichmüller,1986)。

金矿脉及赋矿围岩中也发育有较多无机来源的碳质物,且与硫化物和金颗粒密切共生(Craw,2002)。矿区的碳质物由成矿热液中的烃气混合发生化学反应而产生(Beyssac et al.,2002a2002bGaboury, 2021)。在深部地层中的含烃气流体在向浅部地层转移的过程中,区域变质作用会降低流体中CO2和CH4的含量,同时产生碳质物和水(Craw,2002Ding et al.,2020Hu et al.,2017)。

拉曼测温及岩相学观察显示:CM1形成温度为507~613 ℃,呈细小颗粒,磨圆度较好,呈浸染状分布于石英与云母矿物颗粒中或其间隙,推测可能是碎屑来源,经历了构造—变质作用,为变质成因;层状CM2的形成温度为390~470 ℃,而成矿温度为250~280 ℃(Deng et al.,2020),层状CM2的温度高于成矿温度,且其周围发育黄铁矿和毒砂等金属矿物,推测CM2也是变质成因,在形成过程中发生会聚成层。CM3的形成温度为240~355 ℃,与成矿温度相近,且与石英、黄铁矿及菱铁矿等热液矿物同时沉淀,因此推断CM3是热液成因。

5.2 CM与金矿化的关系

硫化物LA-ICP-MS Mapping和微量元素分析结果显示,相比CM3中的黄铁矿,CM2中黄铁矿的金含量明显较高。推测可能是CM2具有强还原性和吸附性,能够与金、硫等络合物发生氧化还原反应,降低了含矿热液中金的络合物的含量,从而引起沉淀自然金和硫化物(Berner,1985Cox,1995Ding et al.,2020Hu et al.,2017Kříbek et al.,2015McKeag et al.,1989Mirasol-Robert et al.,2017Razvozzhaeva et al.,2008)。

4AuHS2aq-+Cs+4Haq++2H2Ol=4Aus+
CO2aq+8H2Saq

与CM2中的黄铁矿相比,CM3中的黄铁矿更富Cu、Co、Ni、Bi、Pb、Sb、Se和Te,推测这些微量元素在含矿热液中的含量较高。同时,分析结果也显示出CM3的黄铁矿中含有少量的金,推测可能是热液成因的CM3,其有利于硫化物的沉淀,促进硫化作用的发生,破坏了热液中S平衡,导致金的沉淀(Cui et al.,2017Ding et al.,2020Hu et al.,2017Mirasol-Robert et al.,2017Wu et al.,2018)。反应方程式为

2FeOs+4H2Saq+CO2aq=2FeS2+C(s)+4H2Ol

综上所述,CM2和CM3与金主要成矿期关系更为密切,其中CM2的温度比成矿温度高,形成于成矿前变质作用;而CM3的温度与成矿温度相近,形成于成矿期热液作用。CM2的强还原作用,可降低流体的氧逸度,导致自然金的沉淀;而CM3则形成于流体中:CO2+CH4=2C+2H2O,同时产生CM3和黄铁矿,促进了硫化作用的发生,导致金的沉淀。

6 结论

(1)万古金矿的矿石和围岩中可见3种碳质物,分别是CM1、CM2和CM3。其中,CM1以细小颗粒形式赋存于石英与云母矿物颗粒中或其间隙,呈浸染状分布,温度为507~613 ℃,推测为构造—变质成因;层状CM2周围具有大量的硫化物,温度为390~470 ℃,可能是经历了变质作用和会聚作用,使其呈层状;CM3与石英、黄铁矿的热液矿物共生,温度为240~355 ℃,推测为热液成因。

(2)在万古金矿中,成矿前形成的层状CM2可作为有效的还原剂,与含矿热液中金的络合物发生发应,导致金的沉淀;而热液成因的CM3与黄铁矿从成矿流体中共同沉淀,也有利于金的成矿作用。

http://www.goldsci.ac.cn/article/2022/1005-2518/1005-2518-2022-30-6-835.shtml

参考文献

Beny-Bassez CRouzaud J N1985.

Characterization of carbonaceous materials by correlated electron and optical microscopy and raman microspectroscopy

[J].Scanning Ele-ctron Microscopy,(1):119-132.

[本文引用: 1]

Berner R A1985.

Sulphate reduction,organic matter decomposition and pyrite formation

[J].Philosophical Transactions of the Royal Society of London(Series A,Mathematical and Physical Sciences),3151531):25-38.

[本文引用: 1]

Beyssac OGoffé BChopin Cet al2002a.

Raman spectra of carbonaceous material in metasediments:A new geothermometer

[J].Journal of Metamorphic Geology,209):859-871.

[本文引用: 3]

Beyssac ORouzaud J NGoffé Bet al2002b.

Graphitization in a high-pressure,low-temperature metamorphic gradient:A raman microspectroscopy and HRTEM study

[J].Contributions to Mineralogy and Petrology,1431):19-31.

[本文引用: 1]

Charvet JShu LShi Yet al1996.

The building of south China:Collision of Yangzi and Cathaysia blocks,problems and tentative answers

[J].Journal of Southeast Asian Earth Sciences,133/4/5):223-235.

[本文引用: 1]

Chen ZhenyaChen YuanlinGu Shangyiet al2019.

Study on metallogenic relations of carboniferous quartz veins in orogenic gold deposits in southwest margin of Jiangnan Orogenic Belt

[J].Mineral Exploration,104):870-879.

Cox S F1995.

Faulting processes at high fluid pressures:An example of fault valve behavior from the Wattle Gully Fault,Victoria,Australia

[J].Journal of Geophysical Research:Solid Earth,100B7):12841-12859.

[本文引用: 2]

Craw D2002.

Geochemistry of late metamorphic hydrothermal alteration and graphitisation of host rock,Macraes gold mine,Otago Schist,New Zealand

[J].Chemical Geology,1914):257-275.

[本文引用: 2]

Craw DMortensen JMacKenzie Det al2015.

Contrasting geochemistry of orogenic gold deposits in Yukon,Canada and Otago,New Zealand

[J].Geochemistry:Exploration,Environment,Analysis,152/3):150-166.

[本文引用: 1]

Cui NSun LBagas Let al2017.

Geological characteristics and analysis of known and undiscovered graphite resources of China

[J].Ore Geology Reviews,911119-1129.

[本文引用: 1]

Deng TXu D RChi G Xet al2017.

Geology,geochronology,geochemistry and ore genesis of the Wangu gold deposit in northeastern Hunan Province,Jiangnan Orogen,South China

[J].Ore Geology Reviews,88619-637.

[本文引用: 4]

Deng TXu D RChi G Xet al2020.

Caledonian (Early Paleozoic) veins overprinted by Yanshanian (Late Mesozoic) gold mineralization in the Jiangnan Orogen:A case study on gold deposits in northeastern Hunan,South China

[J].Ore Geology Reviews,124103586.

[本文引用: 6]

Ding ZDeng TXu Det al2020.

Genesis of two types of carbonaceous material associated with gold mineralization in the Bumo deposit,Hainan Province,South China

[J].Minerals,108):708.

[本文引用: 3]

Fu ZhaorenLi ZijinZheng Dayu1999.

Tectonic development style of NNE strike slip orogenic belt in Hunan Jiangxi border area

[J].Earth Science Frontiers,(4):263-272.

Gaboury D2021.

The neglected involvement of organic matter in forming large and rich hydrothermal orogenic gold deposits

[J].Geosciences,118):344.

[本文引用: 1]

Gan CWang YBarry T Let al2020.

Late Jurassic high-Mg andesites in the Youjiang Basin and their significance for the southward continuation of the Jiangnan Orogen,South China

[J].Gondwana Research,77260-273.

[本文引用: 1]

Groves D IGoldfarb R JRobert Fet al2003.

Gold deposits in metamorphic belts:Overview of current understanding,outstanding problems,future research,and exploration significance

[J].Economic Geology,981):1-29.

[本文引用: 1]

Guan YYuan CSun Met al2014.

I-type granitoids in the eas-tern Yangtze Block:Implications for the Early Paleozoic intracontinental orogeny in South China

[J].Lithos,20634-51.

[本文引用: 2]

Hu S YEvans KCraw Det al2017.

Resolving the role of carbonaceous material in gold precipitation in metasediment-hosted orogenic gold deposits

[J].Geology,452):167-170.

[本文引用: 4]

Hu SEvans KCraw Det al2015.

Raman characterization of carbonaceous material in the Macraes orogenic gold deposit and metasedimentary host rocks,New Zealand

[J].Ore Geology Reviews,7080-95.

[本文引用: 1]

Kříbek BSýkorová IMachovič Vet al2015.

The origin and hydrothermal mobilization of carbonaceous matter associated with Paleoproterozoic orogenic-type gold deposits of West Africa

[J].Precambrian Research,270300-317.

[本文引用: 2]

Lehmann BNägler T FHolland H Det al2007.

Highly metalliferous carbonaceous shale and Early Cambrian seawater

[J].Geology,355):403-406.

[本文引用: 1]

Leventhal J SGrauch R IThrelkeld C Net al1987.

Unusual organic matter associated with uranium from the Claude deposit,Cluff Lake,Canada

[J].Economic Geology,825):1169-1176.

[本文引用: 1]

Lewan M DBjorøy MDolcater D L1986.

Effects of thermal maturation on steroid hydrocarbons as determined by hydrous pyrolysis of Phosphoria Retort Shale

[J].Geochimica et Cosmochimica Acta,509):1977-1987.

[本文引用: 1]

Li HWu Q HEvans N Jet al2018.

Geochemistry and geochronology of the Banxi Sb deposit:Implications for fluid origin and the evolution of Sb mineralization in central-western Hunan,South China

[J].Gondwana Research,55112-134.

[本文引用: 1]

Liu QinfuYuan LiangLi Kuoet al2018.

Structural characteristics of different metamorphic grade coal-based graphite

[J].Earth Science,435):1663-1669.

Lu HuanzhangChi GuoxiangZhu Xiaoqinget al2018.

Geological characteristics and ore forming fluids of orogenic gold deposits

[J].Geotectonica et Metallogenia,422):244-265.

Ma WDeng TXu D Ret al2021.

Geological and geochemical characteristics of hydrothermal alteration in the Wangu deposit in the central Jiangnan Orogenic Belt and implications for gold mineralization

[J].Ore Geology Reviews,1391-16.DOI:10.1016/j.oregeorev.2021.104479 .

[本文引用: 3]

Mao JingwenLi Hongyan1997.

Research on genesis of the gold deposits in the Jiangnan terrain

[J].Geochimica,(5):71-81.

[本文引用: 2]

McKeag S ACraw DNorris R J1989.

Origin and deposition of a graphitic schist-hosted metamorphogenic Au-W deposit,Macraes,East Otago,New Zealand

[J].Mineralium Deposita,242):124-131.

[本文引用: 1]

Mirasol-Robert AGrotheer HBourdet Jet al2017.

Evidence and origin of different types of sedimentary organic matter from a Paleoproterozoic orogenic Au deposit

[J].Precambrian Research,299319-338.

[本文引用: 2]

Mossman D J1999.

Carbonaceous substances in mineral deposits:Implications for geochemical exploration

[J].Journal of Geochemical Exploration,661/2):241-247.

[本文引用: 1]

Pirajno FBagas L2002.

Gold and silver metallogeny of the South China Fold Belt:A consequence of multiple mineralizing events?

[J].Ore Geology Reviews,203/4):109-126.

[本文引用: 1]

Rahl J MAnderson K MBrandon M Tet al2005.

Raman spectroscopic carbonaceous material thermometry of low-grade metamorphic rocks:calibration and application to tectonic exhumation in Crete,Greece

[J].Earth and Planetary Science Letters,2402):339-354.

[本文引用: 2]

Razvozzhaeva E ANemerov V KSpiridonov A Met al2008.

Carbonaceous substance of the Sukhoi Log gold deposit (East Siberia)

[J].Russian Geology and Geophysics,496):371-377.

[本文引用: 1]

Reich MKesler S EUtsunomiya Set al2005.

Solubility of gold in arsenian pyrite

[J].Geochimica et Cosmochimica Acta,6911):2781-2796.

[本文引用: 1]

Teichmüller M1986.

Organic petrology of source rocks,history and state of the art

[J].Organic Geochemistry,101/2/3):581-599.

[本文引用: 1]

Wang CShao YEvans N Jet al2020.

Genesis of Zixi gold deposit in Xuefengshan,Jiangnan Orogen (South China):Age,geology and isotopic constraints

[J].Ore Geology Reviews,117103301.

[本文引用: 1]

Wang J QShu L SSantosh M2016.

Petrogenesis and tectonic evolution of Lianyunshan complex,South China:Insights on Neoproterozoic and late Mesozoic tectonic evolution of the central Jiangnan Orogen

[J].Gondwana Research,39114-130.

[本文引用: 1]

Wang QingfeiDeng JunZhao Hesenet al2019.

Review on orogenic gold deposits

[J].Earth Science,446):2155-2186.

Wang YitianLiu JunchenMao Jingwen2020.

Metallogenic characteristics and conditions of 3 main types of gold deposits and their exploration significances

[J].Gold,419):12-21.

Wen ZhilinDeng TengDong Guojunet al2016.

Characteristics of ore-controlling structures of Wangu gold deposit in northeast Hunan Province

[J].Geotectonica et Metallogenia,402):281-294.

Wu Y FEvans KFisher L Aet al2020.

Distribution of trace elements between carbonaceous matter and sulfides in a sediment-hosted orogenic gold system

[J].Geochimica et Cosmochimica Acta,276345-362.

[本文引用: 1]

Wu Y FLi J WEvans Ket al2018.

Ore-forming processes of the Daqiao epizonal orogenic gold deposit,West Qinling orogen,China:Constraints from textures,trace elements,and sulfur isotopes of pyrite and marcasite,and raman spectroscopy of carbonaceous material

[J].Economic Geology,1135):1093-1132.

[本文引用: 1]

Xiao YongjunChen Guanghao2004.

Preliminary study on the tectono-metallogenic orientation mechanism of the Dadong-Wangu gold deposit zone,northeastern Hunan Province

[J].Geotectonica et Metallogenia,(1):38-44.

Xu D RDeng TChi G Xet al2017.

Gold mineralization in the Jiangnan Orogenic Belt of South China:Geological,geochemical and geochronological characteristics,ore deposit-type and geodynamic setting

[J].Ore Geology Reviews,88565-618.

[本文引用: 5]

Xu D RGu X XLi P Cet al2007.

Mesoproterozoic-Neoproterozoic transition:Geochemistry,provenance and tectonic setting of clastic sedimentary rocks on the SE margin of the Yangtze Block,South China

[J].Journal of Asian Earth Sciences,295/6):637-650.

[本文引用: 2]

Zhang LYang L QGroves D Iet al2018.

Geological and isotopic constraints on ore genesis,Huangjindong gold deposit,Jiangnan Orogen,southern China

[J].Ore Geology Reviews,99264-281.

[本文引用: 2]

Zhang LYang L QGroves D Iet al2019.

An overview of timing and structural geometry of gold,gold-antimony and antimony mineralization in the Jiangnan Orogen,southern China

[J].Ore Geology Reviews,115103173.

[本文引用: 1]

Zhong JPirajno FChen Y J2017.

Epithermal deposits in South China:Geology,geochemistry,geochronology and tectonic setting

[J].Gondwana Research,42193-219.

[本文引用: 1]

Zhou YXu DDong Get al2021.

The role of structural reactivation for gold mineralization in northeastern Hunan Province,South China

[J].Journal of Structural Geology,145104306.

[本文引用: 3]

Zou S HZou F HNing J Tet al2018.

A stand-alone Co mineral deposit in northeastern Hunan Province,South China:Its timing,origin of ore fluids and metal Co,and geodynamic setting

[J].Ore Geology Reviews,9242-60.

[本文引用: 1]

陈振亚陈原林顾尚义2019.

江南造山带西南缘造山型金矿含炭质石英脉与金成矿关系研究

[J].矿产勘查,104):870-879.

[本文引用: 2]

傅昭仁李紫金郑大瑜1999.

湘赣边区NNE向走滑造山带构造发展样式

[J].地学前缘,(4):263-272.

[本文引用: 1]

刘钦甫袁亮李阔2018.

不同变质程度煤系石墨结构特征

[J].地球科学,435):1663-1669.

[本文引用: 1]

卢焕章池国祥朱笑青2018.

造山型金矿的地质特征和成矿流体

[J].大地构造与成矿学,422):244-265.

[本文引用: 1]

毛景文李红艳1997.

江南古陆某些金矿床成因讨论

[J].地球化学,(5):71-81.

[本文引用: 4]

王庆飞邓军赵鹤森2019.

造山型金矿研究进展:兼论中国造山型金成矿作用

[J].地球科学,446):2155-2186.

[本文引用: 1]

王义天刘俊辰毛景文2020.

3种主要类型金矿床成矿特征、成矿条件及找矿意义

[J].黄金,419):12-21.

[本文引用: 1]

温志林邓腾董国军2016.

湘东北万古金矿床控矿构造特征与控矿规律研究

[J].大地构造与成矿学,402):281-294.

[本文引用: 1]

肖拥军陈广浩2004.

湘东北大洞─万古地区金矿构造成矿定位机制的初步研究

[J].大地构造与成矿学,(1):38-44.

[本文引用: 1]

/