img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2023, 31(2): 219-231 doi: 10.11872/j.issn.1005-2518.2023.02.132

关键金属矿产勘查进展专栏

滇黔桂地区不同成矿温度热液金矿床磷灰石矿物化学特征:兼论卡林型金成矿流体来源特殊性

刘林林,1,2, 陈军,1,2,3, 杨再风1,2, 杜丽娟1,2,3, 吉彦冰1,2, 郑禄林4

1.贵州大学资源与环境工程学院,贵州 贵阳 550025

2.贵州大学喀斯特地质资源与环境教育部重点实验室,贵州 贵阳 550025

3.矿床地球化学国家重点实验室,贵州 贵阳 550081

4.贵州大学矿业学院,贵州 贵阳 550025

Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits

LIU Linlin,1,2, CHEN Jun,1,2,3, YANG Zaifeng1,2, DU Lijuan1,2,3, JI Yanbing1,2, ZHENG Lulin4

1.College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China

2.Key Laboratory of Karst Georesources and Environment, Ministry of Education, Guizhou University, Guiyang 550025, Guizhou, China

3.State Key Laboratory of Ore Deposit Geochemistry, Guiyang 550081, Guizhou, China

4.Mining College of Guizhou University, Guiyang 550025, Guizhou, China

通讯作者: 陈军(1987-),男,甘肃定西人,副教授,从事低温热液矿床研究工作。chenjun@gzu.edu.cn

收稿日期: 2022-09-30   修回日期: 2022-11-28  

基金资助: 贵州省科技支撑计划(一般)项目“南盘江—右江地区多期构造/热液演化过程及其成矿效应研究”(编号:黔科合支撑[2023]一般112)、国家自然科学基金地区基金项目“硅化对右江盆地卡林型金矿成矿过程的制约:以泥堡金矿床为例”.  41962008
矿床地球化学国家重点实验室开放研究基金“贵州三都—丹寨成矿带Au-Sb-Hg成矿流体演化及对成矿过程的约束”.  201905
“右江盆地多期构造/热液演化对金—锑富集成矿的制约”.  202210
贵州大学培育项目“右江盆地低温热液矿集区金、锑多幕式成矿过程研究”.  贵大培育[2020]7号

Received: 2022-09-30   Revised: 2022-11-28  

作者简介 About authors

刘林林(1999-),男,贵州仁怀人,硕士研究生,从事矿物学、岩石学和矿床学研究工作13048576651@163.com , E-mail:13048576651@163.com

摘要

滇—黔—桂地区是我国重要的金成矿区之一,分布有众多高温岩浆热液型金(铜)矿床和低温热液型金矿床,但这些矿床的成矿物质来源和形成过程仍存在争议。通过对高温岩浆—热液型金(铜)矿床(姚安金矿床和普朗金铜矿床)和低温卡林型金矿床(八渡和泥堡)中的热液磷灰石进行微量元素统计分析发现:高温富碱斑岩型金(铜)矿床中的磷灰石自形程度较好,具有较高的F和Cl含量,稀土元素呈轻稀土富集,重稀土亏损;相对而言,低温卡林型金矿床中产出的磷灰石自形程度较差,具有相对较低的F和Cl含量,稀土呈中稀土富集模式。另外,磷灰石δEu-δCe图解和球粒陨石标准化稀土元素配分模式揭示卡林型金矿床相对于岩浆热液型铜、金矿床具有更高的氧逸度。结合右江盆地辉锑矿稀土元素地球化学分析,认为磷灰石(包括萤石和方解石)中稀土(MREE)富集特征指示低温成矿流体可能与特殊的盆地基底岩石存在一定联系。综合分析认为:磷灰石在高温—中低温金矿床中具有独特的地球化学特征,能够有效揭示矿床类型及成矿流体演化过程。

关键词: 磷灰石 ; 微量元素 ; 成矿流体 ; 卡林型金矿 ; 岩浆热液型铜金矿

Abstract

Yunnan-Guizhou-Guangxi region,one of the most important gold mineralization areas in China,hosts many high temperature magmatic hydrothermal gold (copper) deposits,such as Pulang gold-bearing porphyry copper deposit,Beiya and Yaoan gold deposits,and low temperature hydrothermal gold deposits,namely carlin-type gold deposit,such as Badu,Nibao and Shuiyindong gold deposits.A lot of chemical studies of minerals,such as magnetite,pyrite and apatite have been carried out,and the abundant mineralogical geochemical data of trace elements in situ have been accumulated. However,the source materials and formation process of the deposits are still be disputed.Therefore,further statistical and comparative analyses of these data may provide a basis for revealing metallogenic information and guiding prospecting exploration.Due to the unique chemical characteristics,apatite can better preserve the important information of magma-hydrothermal evolution process,and is often used to define the fine metallogenic process of ore deposits.In this paper,the trace elements of hydrothermal apatite in high-temperature magma-hydrothermal deposits(Yao’an gold deposit and Pulang gold-bearing copper deposit) and low-temperature carlin-type gold deposits(Badu and Nibao gold deposits) have been collected and analyzed.It is found that the apatite in the high-temperature alkali-rich porphyry gold (copper) deposit is characterized by automorphic shape,high F and Cl contents,enriched LREE,and depleted HREE.In contrast,the apatite in the low-temperature carlin-type gold deposits is characterized by hypautomorphic and xenomorphic shapes,low F and Cl contents,enriched MREE.In addition,the δEu-δCe binary diagram and chondrite-normalized REE patterns revealed that the carlin-type gold deposits have higher oxygen fugacity than magmatic hydrothermal copper and gold deposits.Combined with the geochemical analysis of rare earth elements of stibnite in the Youjiang Basin,it is concluded that the enrichment characteristics of MREE in apatite(including fluorite and calcite) indicate that the low-temperature mineralizing fluid may be related to the special basin basement rock. In conclusion,apatite has unique geochemical characteristics in high temperature-medium and low temperature gold deposits,which can effectively reveal the type of ore deposit and the evolution process of ore-forming fluid.

Keywords: apatite ; trace elements ; ore-forming fluid ; carlin-type gold deposit ; magmatic hydrothermal copper and gold deposits

PDF (3638KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

刘林林, 陈军, 杨再风, 杜丽娟, 吉彦冰, 郑禄林. 滇黔桂地区不同成矿温度热液金矿床磷灰石矿物化学特征:兼论卡林型金成矿流体来源特殊性[J]. 黄金科学技术, 2023, 31(2): 219-231 doi:10.11872/j.issn.1005-2518.2023.02.132

LIU Linlin, CHEN Jun, YANG Zaifeng, DU Lijuan, JI Yanbing, ZHENG Lulin. Chemical Characteristics of Apatite Minerals in Hydrothermal Gold Deposits with Different Metallogenic Temperatures in the Yunnan-Guizhou-Guangxi Region:A Discussion on the Particularity of Sources of Ore-forming Fluids of the Carlin-type Gold Deposits[J]. Gold Science and Technology, 2023, 31(2): 219-231 doi:10.11872/j.issn.1005-2518.2023.02.132

云南(滇)—贵州(黔)—广西(桂)地区是我国重要的金成矿区之一,分布有大量岩浆—热液型铜金矿床(如普朗斑岩铜矿和姚安金矿床等)和低温热液型金矿床(即卡林型金矿床,如八渡、泥堡和水银洞等金矿床)。前人通过对滇西普朗富碱斑岩铜金矿和姚安富碱斑岩金矿床中与成矿相关的脉石矿物进行流体包裹体测温得出均一温度范围在154~457 ℃之间,主要集中在300~400 ℃之间,属于高温热液矿床(王守旭等,2007)。而在卡林型金矿中,流体包裹体形成温度在200 ℃左右,属于中低温热液矿床(苏文超等,2015谢贤洋等,2016)。前人针对这些金矿床开展了大量的矿物原位分析(如磁铁矿、黄铁矿和磷灰石等)研究工作,并积累了丰富的矿物原位微量元素地球化学数据(Hu et al.,2002Su et al.,2009Chen et al.,2019Guo et al.,2020Chen et al.,2021a2021b2021cWei et al.,2022)。近年来,随着大数据分析在矿床学研究中的应用,对大量矿物原位分析数据进行进一步统计分析已成为揭示成矿信息和指导找矿勘查的重要手段。

磷灰石是一种含钙磷酸盐矿物的总称,其化学成分为Ca5(PO4)3(F,Cl,OH),由于其化学性质的特殊性,许多元素可以通过类质同象的形式进入磷灰石晶格,因此磷灰石中包含丰富的主、微量元素,如F、Cl、Sr、Th和REEs(Pan et al.,2002朱笑青等,2004Chu et al.,2009)。另外,由于磷灰石在很宽的温压范围内稳定,所以能够很好地保留原始成矿信息,是揭示地质过程的重要指纹矿物,其地球化学特征(如主微量元素含量、Sr-Nd同位素组成和O、Cl同位素组成)均可作为岩浆—热液活动的示踪剂,已被广泛应用于成矿流体来源和演化过程示踪(Zheng,1996Sun et al.,2019周秋石等,2020Pan et al.,2020Zhang et al.,2020邢凯等,2021Duan et al.,2021Xiao et al.,2021Xu et al.,2021Nayebi et al.,2021Zhang et al.,2021a)。例如,磷灰石的裂变径迹(AFT)可以追溯岩浆热液矿床的演化过程,限制矿床的成矿年龄(Wang et al.,2018Ansberque et al.,2021Sun et al.,2021);磷灰石对许多元素(Sr、Nd、Ba、Pb、Th和U等)具有较高的矿物—熔体/流体分配系数,同时也是F和REE的重要载体(Teiber et al.,20142015Ansberque et al.,2019Qu et al.,2019Pickering et al.,2020),是一种非常敏感的地球化学指纹(Andersson et al.,2019)。因此,开展热液磷灰石原位微量及同位素研究是揭示热液精细成矿过程的重要手段之一。

研究发现,滇—黔—桂地区金矿床(图1)均发育有大量与成矿有关的磷灰石,如滇西姚安金矿床(富矿黑云母正长斑岩)中的磷灰石和滇西普朗斑岩铜矿中(石英闪长玢岩和石英二长斑岩)未蚀变的磷灰石,其形成与高温(300~500 ℃)岩浆热液演化有关(王晨光等,2017郑瑜林等,2021);而位于右江盆地的卡林型金矿床中的磷灰石与低温(50~200 ℃)流体演化有关(Chen et al.,2019Wei et al.,2022)。前人对岩浆热液有关的铜、金矿床中的磷灰石开展了较为系统的原位微量元素研究工作(Sun et al.,2019Pan et al.,2020Ansberque et al.,2021Duan et al.,2021Xiao et al.,2021Lu et al.,2021Xu et al.,2021Nayebi et al.,2021Zhang et al.,2021bWei et al.,2022),并获取了相对系统的测试数据。相对而言,关于卡林型金矿床中磷灰石的研究较为薄弱。

图1

图1   滇—黔—桂地区高—低温热液金矿床位置分布和构造简图(修改自Zhu et al.,2020

(a)华南地区构造纲要图;(b)滇—黔—桂地区主要金矿床分布图

Fig.1   Location distribution and structural map of high-low temperature hydrothermal gold deposits in Yunnan-Guizhou-Guangxi region(modified after Zhu et al.,2020


因此,本文在收集前人已有数据的基础上,通过对比不同成因矿床中磷灰石的微量元素特征,旨在揭示不同温度热液矿床中磷灰石对成矿的指示意义。同时,结合右江盆地低温成矿区辉锑矿稀土元素地球化学分析,进一步探讨了右江盆地低温成矿流体的来源,为全面认识大面积低温热液成矿作用提供更多依据。

1 磷灰石与热液金成矿之间的关系

1.1 高温岩浆热液矿床中磷灰石特征

以姚安金矿床和普朗斑岩铜矿床为例,探讨高温岩浆热液矿床中磷灰石特征。

姚安金矿床位于金沙江—哀牢山富碱斑岩带中段,大地构造位置处于扬子板块西缘与三江特提斯造山带结合部位,其成矿与新生代富碱岩浆—岩浆热液密切相关(葛良胜等,2002)。前人测得与成矿相关的花岗正长斑岩中黑云母K-Ar年龄为36 Ma(张玉泉等,1997曾普胜,2002),正长斑岩和黑云母二长斑岩中锆石U-Pb年龄分别为28.9 Ma和36.8 Ma(毕献武等,2005李勇等,2011)。富矿的黑云母正长斑岩中磷灰石呈长柱—短柱状,自形程度较好,表面干净未遭受蚀变。富矿岩体中含有较多的含水矿物黑云母和角闪石,表明富矿岩体较贫矿岩体更加富水,高的水含量在源区岩石部分熔融过程中,可以降低其熔点,致使更多的铜金硫化物重融,且增加金属元素在熔体中的溶解度使其岩浆流体活动性更强。同时,高的氧逸度使得S以SO42-的形式存在,有利于金属元素在岩浆或流体中的迁移和富集(郑瑜林等,2021)。

普朗斑岩铜矿床位于西南三江成矿带中段的滇西北地区,大地构造位置处于三叠纪义敦岛弧带南端的中甸弧内(曾普胜等,2006),是我国近年来发现的重要斑岩型铜矿床之一,矿床规模已达到大型以上,前人通过对斑岩铜矿中辉钼矿Re-Os测年和矿化斑岩体的Ar/Ar测年得出矿床形成年龄在216~213 Ma之间(张玉泉等,1997曾普胜等,2006)。斑岩铜矿中的石英闪长玢岩和石英二长斑岩中未蚀变的磷灰石呈长柱状,自形程度较好。前人通过对矿区中已发生蚀变和未蚀变的磷灰石展开研究,发现遭受过热液蚀变的磷灰石明显亏损REE、Nd、Ce、Y、Na和S等元素,相比已经发生蚀变的磷灰石,未蚀变磷灰石中(La/Sm)N、(La /Yb)N和(Sm/Yb)N比值降低,可能是含Cl流体出溶和该矿床中富LREE矿物(独居石)结晶的结果(Flynn et al.,1978Keppler,1996)。相比未成矿岩体中的磷灰石,成矿岩体中的磷灰石具有较高的δEu值、较低的δCe和Mn值,表明普朗矿床成矿岩浆具有较高的氧逸度,而未蚀变磷灰石具有较高的Cl/F值,暗示着普朗矿床形成于典型的俯冲环境(邢凯等,2018)。

1.2 右江盆地卡林型低温金矿床中磷灰石特征

右江盆地金—锑—砷矿集区因发育多元素组合的大型—超大型矿床,其中卡林型金矿床可与美国中西部低温成矿域内的卡林型金矿床对比而被地学界关注,是研究大规模低温成矿作用最为理想的场所(Hu et al.,2017)。该矿集区位于全球特提斯和环太平洋两大巨型成矿域的交汇部位,成矿条件优越。目前在区内已探明金矿储量920 t,其中超大型金矿床2个(水银洞和烂泥沟)、大型金矿床6个(泥堡、戈塘、丫他、紫木凼、架底和金牙)。近年来,区内许多矿床深部和外围找矿工作取得了重大突破(刘建中等,2017),如水银洞、泥堡和架底等,显示矿集区具有良好的找矿远景。

研究发现,右江盆地卡林型金矿床中普遍发育自形程度较差的多阶段磷灰石,并与不同阶段(类型)的载金黄铁矿和毒砂密切相关[图2(a)]。Chen et al.(2019)通过对黔西南泥堡金矿床中与金成矿有关的热液磷灰石进行SIMS Th-Pb测年,获得可靠的232Th/208Pb年龄[(141±3)Ma],与卡林型金矿床方解石Sm-Nd测年[水银洞为(134±3)Ma,紫木凼为(148±4.8)Ma](Su et al.,2009Wang et al.,2021)比较接近。另外,右江盆地卡林型金矿床中的磷灰石与成矿期方解石和萤石具有相似的中稀土(MREE)配分模式[图2(b)、2(c)]。然而,针对这种右江盆地热液含钙矿物的MREE富集机制目前尚不清楚(Tan et al.,20152017Chen et al.,2020)。

图2

图2   右江盆地低温热液矿集区锑—金成矿相关的萤石、磷灰石和方解石中稀土富集特征

注:辉锑矿流体包裹体发育,稀土元素也呈现出弱的MREE富集特征;泥堡稀土元素和成矿年龄数据引自Chen et al.(2019);水银洞稀土元素和成矿年龄数据引自Su et al.(2009);晴隆萤石年龄数据引自彭建堂等(2003)、稀土元素数据引自Chen et al.(2020);辉锑矿稀土元素数据来自本文

Fig.2   Middle rare earth (MREE) enrichment characteristics in fluorite,apatite and calcite,associated with antimony-gold mineralization in the low-temperature hydrothermal ore concentration area of Youjiang Basin


2 滇黔桂高温、低温热液金矿床中磷灰石成分特征

磷灰石富含REE、Sr、U和Th等微量元素,微量元素的含量在不同成因类型的磷灰石中差异较大,可作为指示其母岩类型的重要指标(张硕等,2018Lu et al.,2021),因此成为研究岩石成因、成矿物质来源和地质体热年代学演化等重要地质过程的较为理想的指示性矿物(贾丽琼等,2011)。

与传统的研究方法相比,磷灰石已被广泛运用于高—低温热液成矿作用的研究之中。磷灰石具有高的F、Cl含量,相比F,Cl更容易进入含水溶液中,可以促进成矿物质在热液中的运输,并影响后期成矿物质的沉淀(Chu et al.,2009Qian et al.,2019Jia et al.,2020)。因此,未蚀变的磷灰石中的Cl/F比值在很大程度上能够反映其初始结晶系统中的Cl/F比值特征,进而评估岩浆—热液系统的成矿潜力以及指示母岩浆的源区特征(邢凯等,20182021)。

通过对高温岩浆—热液型金(铜)矿床(姚安和普朗)和低温卡林型金矿床中的热液磷灰石进行统计发现,这些矿床基本呈现出高F、低Cl的特征(表1)。但是,高温热液(斑岩型)金矿中磷灰石的F和Cl含量相对高于低温热液(卡林型)金矿床中的磷灰石(图3),可能是高温矿床成矿流体比低温卡林型金矿床成矿流体更富集F和Cl。这种斑岩型铜、金矿中高的F/Cl比值指示成矿岩浆中有俯冲流体的加入,矿床的形成与俯冲作用相关(Deng et al.,20142017)。同时,高的F、Cl含量揭示岩浆分离出的挥发分(H2O、HCl、HF)可与金属元素形成络合物,有利于金属元素在岩浆中富集和迁移(郑瑜林等,2021)。

表1   滇—黔—桂地区不同成因金矿床中磷灰石部分地球化学元素特征值

Table 1  Characteristic values of some geochemical elements of apatite from different gold deposits in the Yunnan-Guizhou-Guangxi region

矿床名称元素
FClF/ClδEuδCe
姚安金矿3.4290.210717.240.701.44
普朗斑岩铜矿3.34080.33589.950.450.92
八渡卡林型金矿3.0228130.0035863.661.310.97
泥堡金矿2.90.0047250.830.64

注:表中数据来自文献(邢凯等,2018Chen et al.,2019郑瑜林等,2021Wei et al.,2022),故数据的有效数字不统一;δCe=Ce/Ce*=CeN/0.5(LaN+PrN)(Bau et al.,1996),δEu=Eu/Eu*=EuN/(SmN×GdN)0.5(Taylor et al.,1985);F、Cl元素含量单位为%

新窗口打开| 下载CSV


图3

图3   滇—黔—桂地区不同矿床磷灰石F、Cl关系图

Fig.3   Diagram of F and Cl in apatite from different deposits in Yunnan-Guizhou-Guangxi region


稀土元素在热液中是以氯络合物和硫酸盐络合物的形式迁移;在酸性条件的低氯、含氟流体中主要以氯络合物和硫酸盐络合物的形式迁移;在碱性条件下则是以羟基络合物的形式迁移(Louvel et al.,2015)。其中,Eu和Ce常用来揭示流体性质,高氧逸度条件有利于成矿流体迁移成矿。在氧化条件下,Eu2+被氧化成Eu3+,离子半径变小,易进入矿物晶格,发生类质同象造成矿物中Eu的正异常,而Ce3+被氧化成Ce4+,溶解度变低,不易随流体迁移,造成沉淀的矿物中Ce负异常(彭建堂等,2002王国芝等,2002Cao et al.,2012Ding et al.,2015Zou et al.,2022)。因此,Eu和Ce的价态变化能够很好地反映当时成矿流体的氧化还原条件。

上述高温热液金矿床中,普朗斑岩矿床中磷灰石δCe值的变化范围是0.82~1.04,δEu值的变化范围是0.34~0.66,姚安金矿床中磷灰石δCe值的变化范围是1.32~1.83,δEu值的变化范围是0.59~0.80。作为低温卡林型金矿,八渡金矿中磷灰石δCe值的变化范围是0.88~1.00,δEu值的变化范围是1.00~1.53,泥堡金矿中磷灰石的δCe值的变化范围是0.52~0.84,δEu值的变化范围是0.78~0.87(图4)。同时,在上述矿床中,相比贫矿岩体中产出的磷灰石,富矿岩体中产出的磷灰石具有较高的δEu值和较低的δCe值。δEu值和δCe值能够反映岩浆的氧化还原状态,较高的δEu值和较低的δCe值表明岩浆具有较高的氧逸度,有利于成矿流体中成矿相关元素迁移富集成矿(王晨光等,2017邢凯等,20182021郑瑜林等,2021)。

图4

图4   滇—黔—桂地区不同矿床磷灰石δEu-δCe图解

注:每个矿床各统计了10组δEu和δCe值数据

Fig.4   Diagram of δEu-δCe in apatite from different deposits in Yunnan-Guizhou-Guangxi region


除了八渡金矿呈正异常外,其余矿床δEu值均为负异常(表1)。八渡金矿δEu呈正异常可能与其母岩赋矿辉绿岩有关,由于辉绿岩主要成分为富Ca的矿物辉石和斜长石,随着成矿过程中氧逸度的增加,Eu2+被氧化成Eu3+,其离子半径变小,从而替代Ca2+进入磷灰石晶格中造成Eu正异常。稀土元素在低温卡林型金矿(八渡金矿和泥堡金矿)中的磷灰石呈中稀土富集模式,而高温富碱斑岩型金矿床中的磷灰石呈轻稀土富集、重稀土亏损模式(图5),揭示出2种截然不同的流体来源。

图5

图5   滇—黔—桂地区不同金矿床中与金成矿相关磷灰石稀土元素(平均值)配分模式图

Fig.5   Distribution patterns of rare earth elements(average value) related to gold mineralization in apatite from different gold deposits in Yunnan-Guizhou-Guangxi region


综上所述,在高温热液金矿床中磷灰石自形程度较好,具有高F低Cl的特征,稀土元素呈轻稀土富集,重稀土亏损,并伴随Eu负异常(邢凯等,2018Chen et al.,2018bXu et al.,2021)。高温岩浆热液矿床中的蚀变磷灰石呈现出元素Ba和Sr富集的特征,表明岩浆源岩受到俯冲板块衍生流体的改造(Qu et al.,2021)。与富碱斑岩型金矿床和铜钼矿床中的磷灰石相比,卡林型金矿床中产出的磷灰石自形程度较差,具有较低的F和Cl含量,稀土呈中稀土(MREE)富集模式,指示金矿成矿流体可能主要来自基底深部流体输入。因此,基底物质的贡献可能对右江盆地卡林型金矿床的成矿作用至关重要(Chen et al.,2019Wei et al.,2022)。

3 右江盆地卡林型金成矿流体来源和演化特殊性

通过前文分析可知,高温和低温热液矿床中磷灰石具有明显不同的元素地球化学特征。相对而言,斑岩型铜—金矿床的成矿流体来源的认识基本一致。但是,对于卡林型金矿床的成矿流体来源仍存在较大争议,主要有沉积—盆地卤水成矿、岩浆热液成矿和变质流体成矿3种不同的观点。与滇—黔—桂地区岩浆热液磷灰石相比,卡林型金矿床存在独特的MREE稀土配分模式[图2(a)~2(c)]。然而,一直以来对这种独特的稀土配分模式机制尚不清楚。

为此,本文在对不同温度磷灰石矿物进行化学分析的基础上,结合右江盆地卡林型金成矿区辉锑矿稀土元素地球化学分析[图2(d)和表2]结果,以及稀土在流体中的运移和沉淀机制(Migdisov et al.,2014佘海东等,2018),认为造成MREE富集的原因可能有以下3种:

表2   晴隆锑矿床中辉锑矿稀土元素含量

Table 2  Rare earth element(REE)content of stibnite in Qinglong antimony deposit(×10-6

样品编号稀土元素
LaCePrNdSmEuGdTbDyHoErTmYbLu
DJ-1622.90.2500.5100.1100.0390.1500.291.100.0330.0670.0200.0580.019
DSC-2601.80.1800.3000.0440.0110.0470.170.710.0060.0130.0030.0210.003
GL-12491.20.1300.2100.0540.0210.0450.221.100.0060.0060.0020.0130.002
J1-10531.130.0850.0490.019-0.0110.140.890.0030.0120.0020.025-
J1-23531.20.0980.0640.022-0.0110.241.400.0030.0030.0040.019-
J1-3571.20.1200.0650.0460.0080.0440.150.990.0060.0150.0020.019-
LBC-1481.30.1200.2300.0480.0140.0740.220.980.0100.0250.0060.028-
LBC-14400.90.0960.1200.0410.0100.0530.010.190.0150.0340.0050.0380.005
LBC-18501.20.1110.1200.0480.0020.0300.230.890.0080.0100.0030.0100.006
LBC-3320.690.0590.0060.0070.0020.002-0.120.0040.0040.0020.0220.006
LBC-4451.40.1300.1300.0340.0020.0300.211.100.0030.0180.0030.023-
LBD-13482.20.3101.2000.2800.0820.1900.251.300.0180.0310.0060.0250.003
TK-2451.10.0910.0740.0420.0030.0370.220.670.0080.0140.0020.018-
TK-6501.20.0910.0560.0260.0050.0150.241.100.0020.0070.0030.013-
J1-15521.20.1000.0500.0140.0020.0220.351.100.0020.0050.0030.0120.002

注:“-”表示低于检测限

新窗口打开| 下载CSV


(1)独特的稀土分馏—沉淀模式。在大多数热液矿床中,由于轻稀土相对重稀土具有较强的活动能力,其稀土配分模型常呈现轻稀土富集型(右倾),但当一些富集轻稀土矿物大量沉淀时(如独居石),会导致晚期流体中轻稀土急剧亏损,而形成MREE富集矿物。但在整个右江盆地,很少见有独居石等富轻稀土矿物。

(2)REE络合形式的不同。试验模拟表明,流体REE组成通常取决于流体与岩石相互作用的程度以及F-、HCO3-、SO42-和Cl-等复杂络阴离子的浓度(Haas et al.,1995),当REE主要赋存于硫酸盐络合物(LnSO4+)中时,缺少轻稀土/重稀土分馏(因为轻稀土和重稀土在硫酸盐络合物中具有相似的稳定性),可能使中稀土元素(MREE)很容易从沉积岩中浸出到热液流体中(Wood,1990),但这一机制未见在热液矿床实例中报道。

(3)流体源区的继承。一些特殊的沉积地层通常会呈现出独特的MREE富集特征,如德国—波兰一些沉积盆地的砂页岩(Sawlowicz,2013)和美国盆地深卤水(Gosselin et al.,1992)。当流体对这些富集MREE的地层进行交代时,有可能形成富MREE的成矿流体。

根据以上分析,这种独特的富MREE磷灰石不太可能是由矿物结晶和流体运移过程中稀土的分馏导致,而可能与独特的流体性质有关。换言之,流体本身就富集MREE,这也被晴隆锑矿床中辉锑矿弱的MREE富集特征[图2(d)]所证实。其原因在于,辉锑矿化学组成中锑和硫的原子半径、共价半径、离子半径、电负性和地球化学习性与稀土元素差别较大,稀土元素很难进入辉锑矿晶格,因此辉锑矿中的稀土元素应该是寄存在流体包裹体中。从辉锑矿稀土元素配分曲线[图2(d)]可以看出,辉锑矿整体上强烈富集LREE,MREE元素Tb和Dy显示正异常,与共生萤石的MREE富集特征相同,这可能与稀土元素和F的络合形式有关(Bilal et al.,1979)。

研究显示,右江盆地金、锑矿床中辉锑矿包裹体非常发育,这些包裹体盐度[w(NaCl)]在2%~20%之间,并含硫酸盐子晶(苏文超等,2015Chen et al.,2018a),暗示含Sb流体中稀土可能主要以SO42-的方式运移。另外,笔者所在团队前期对晴隆锑矿床开展的萤石Sr同位素组成研究发现,成矿流体中的放射性成因Sr主要来自深部变质基底(Chen et al.,2020);Wei et al.(2022)对八渡卡林型金矿床中磷灰石开展原位Sr同位素组成分析,同样揭示成矿流体中有大量来自基底地层的放射性成因87Sr。以上证据表明,这种富MREE的流体可能与特殊的盆地基底岩石存在一定的联系。

4 结论

(1)低温卡林型金矿床中的磷灰石自形程度较差,且其F和Cl含量相比斑岩型铜、金矿床较低,稀土元素呈中稀土富集模式;与高温岩浆热液有关的斑岩型铜、金矿中磷灰石自形程度较好,具有高F低Cl的特征,稀土元素呈轻稀土富集,重稀土亏损。

(2)磷灰石的δEu值和δCe值表明,低温卡林型金矿床中的成矿流体氧逸度比高温铜、金矿床中的成矿流体氧逸度高,并具有明显的中稀土富集特征。

(3)结合辉锑矿稀土元素分析结果,认为卡林型金成矿流体与特殊的盆地基底岩石存在一定的联系。

http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-2-219.shtml

参考文献

Andersson S SWagner TJonsson Eet al2019.

Apatite as a tracer of the source,chemistry and evolution of ore-forming fluids:The case of the Olserum-Djupedal REE-phosphate mineralisation,SE Sweden

[J].Geochimica et Cosmochimica Acta,255163-187.

[本文引用: 1]

Ansberque CChew D MDrost K2021.

Apatite fission-track dating by LA-Q-ICP-MS imaging

[J].Chemical Geology,560119977.

[本文引用: 2]

Ansberque CMark CCaulfield J Tet al2019.

Combined in-situ determination of halogen (F,Cl) content in igneous and detrital apatite by SEM-EDS and LA-Q-ICPMS:A potential new provenance tool

[J].Chemical Geology,524406-420.

[本文引用: 1]

Bau MDulski P1996.

Distribution of yttrium and rare earth elements in the Penge and Kuruman iron formations,Transvaal supergroup South Africa

[J].Precambrian Research,7937-55.

[本文引用: 1]

Bi XianwuHu RuizhongPeng Jiantanget al2005.

Geochemical characteristics of the Yao’an and Machangqing alkaline-rich intrusions

[J].Acta Petrologica Sinica,211):113-124.

Bilal B ABecker P1979.

Complex formation of trace elements in geochemical systems—II.Stability of rare earths fluoro complexes in fluorite bearing model system at various ionic strengths

[J].Journal of Inorganic and Nuclear Chemistry,4111):1607-1608.

[本文引用: 1]

Cao M JLi G MQin K Zet al2012.

Major and trace element characteristics of apatites in granitoids from Central Kazakhstan:Implications for petrogenesis and mineralization

[J].Resource Geology,621):63-83.

[本文引用: 1]

Chen JHuang Z LYang R Det al2021a.

Gold and antimony metallogenic relations and ore-forming process of Qinglong Sb(Au) deposit in Youjiang basin,SW China:Sulfide trace elements and sulfur isotopes

[J].Geoscience Frontiers,122):605-623.

[本文引用: 1]

Chen JYang R DDu L Jet al2018a.

Mineralogy,geochemistry and fluid inclusions of the Qinglong Sb-(Au) deposit,Youjiang basin(Guizhou,SW China)

[J].Ore Geology Reviews,921-18.

[本文引用: 1]

Chen JYang R DDu L Jet al2020.

Multistage fluid sources and evolution of Qinglong Sb-(Au) deposit in northern margin of Youjiang basin,SW China:REE geochemistry and Sr-H-O isotopes of ore-related jasperoid,quartz and fluorite

[J].Ore Geology Reviews,127103851.

[本文引用: 3]

Chen LZhang Y2018b.

In situ major-,trace-elements and Sr-Nd isotopic compositions of apatite from the Luming porphyry Mo deposit,NE China:Constraints on the petrogenetic-metallogenic features

[J].Ore Geology Reviews,9493-103.

[本文引用: 1]

Chen M HBagas LLiao Xet al2019.

Hydrothermal apatite SIMS Th Pb dating:Constraints on the timing of low-temperature hydrothermal Au deposits in Nibao,SW China

[J].Lithos,324/325418-428.

[本文引用: 6]

Chen X LHuang W TChen Let al2021b.

Controlling factors of different Late Cretaceous granitoid-related mineralization between western margin of the Yangtze Block and the neighbor Yidun arc

[J].Ore Geology Reviews,139104554.

[本文引用: 1]

Chen X LLeng C BZou S Het al2021c.

Geochemical compositions of apatites from the Xuejiping and Disuga porphyries in Zhongdian arc:Implications for porphyry Cu mineralization

[J].Ore Geology Reviews,130103954.

[本文引用: 1]

Chu M FWang K LGriffin W Let al2009.

Apatite composition:Tracing petrogenetic processes in transhimalayan granitoids

[J].Journal of Petrology,501829-1855.

[本文引用: 2]

Deng JWang Q FLi G J2017.

Tectonic evolution,superimposed orogeny,and composite metallogenic system in China

[J].Gondwana Research,50216-266.

[本文引用: 1]

Deng JWang Q FLi G Jet al2014.

Tethys tectonic evolution and its bearing on the distribution of important mineral deposits in the Sanjiang region,SW China

[J].Gondwana Research,262):419-437.

[本文引用: 1]

Ding TMa D SLu J Jet al2015.

Apatite in granitoids related to polymetallic mineral deposits in southeastern Hunan Province,Shi-Hang zone,China:Implications for petrogenesis and metallogenesis

[J].Ore Geology Reviews,69104-117.

[本文引用: 1]

Duan D FJiang S YTang Y Jet al2021.

Chlorine and sulfur evolution in magmatic rocks:A record from amphibole and apatite in the Tonglvshan Cu-Fe(Au) skarn deposit in Hubei Province,south China

[J].Ore Geology Reviews,137104312.

[本文引用: 2]

Flynn R TBurnham C W1978.

An experimental determination of rare earth partition coefficients between a chloride containing vapor phase and silicate melts

[J].Geochimica et Cosmochimica Acta,426):685-701.

[本文引用: 1]

Ge LiangshengGuo XiaodongZou Yilinet al2002.

Geology and genesis of gold deposit related to alkali rich magmatism in Yao’an,Yunnan Province

[J].Geology and Resources,111):29-37.

Gosselin D CSmith M RLepel E Aet al1992.

Rare earth elements in chloride-rich groundwater,Palo Duro Basin,Texas,USA

[J].Geochimica et Cosmochimica Acta,561495-1505.

[本文引用: 1]

Guo J HLeng C BZhang X Cet al2020.

Textural and chemical variations of magnetite from porphyry Cu-Au and Cu skarn deposits in the Zhongdian region,northwestern Yunnan,SW China

[J].Ore Geology Reviews,116103245.

[本文引用: 1]

Haas J RShock E LSassani D C1995.

Rare earth elements in hydrothermal systems:Estimates of standard partial molal thermodynamic properties of aqueous complexes of the rare earth elements at high pressures and temperatures

[J].Geochimica et Cosmochimica Acta,5921):4329-4350.

[本文引用: 1]

Hu R ZChen W TXu Det al2017.

Reviews and new metallogenic models of mineral deposits in South China:An introduction

[J].Journal of Asian Earth Sciences,1371-8.

[本文引用: 1]

Hu R ZSu W CBi X W2002.

Geology and geochemistry of carlin-type gold deposits in China

[J].Mineralium Deposita,37378-392.

[本文引用: 1]

Jia F DZhang C QLiu Het al2020.

In situ major and trace element compositions of apatite from the Yangla skarn Cu deposit,southwest China:Implications for petrogenesis and mineralization

[J].Ore Geology Reviews,127103360.

[本文引用: 1]

Jia LiqiongDong GuochenWang Lianget al2011.

Research sta-tus of apatite genetic mineralogy

[C]//Proceedings of the 13th Annual Academic Conference of the Chinese Society of Mineral and Petrology Geochemistry.GuangzhouChinese Society for Mineralogy Petrology and Geochemistry.

Keppler H1996.

Constraints from partitioning experiments on the composition of subduction-zone fluids

[J].Nature,380237-240.

[本文引用: 1]

Li YongMo XuanxueYu Xuehuiet al2011.

Zircon U-Pb dating of several selected alkali-rich porphyries from the Jinshajiang-Ailaoshan fault zone and geological significance

[J].Geoscience,252):189-200.

Liu JianzhongYang ChengfuWang Zepenget al2017.

Geological study of Shuiyindong gold deposit in Zhenfeng County,Guizhou Province

[J].Geological Survey of China,42):32-41.

Louvel MBordage ATestemale Det al2015.

Hydrothermal controls on the genesis of REE deposits:Insights from an in situ XAS study of Yb solubility and speciation in high temperature fluids (T<400℃)

[J].Chemical Geology,417228-237.

[本文引用: 1]

Lu JChen WYing Y Cet al2021.

Apatite texture and trace element chemistry of carbonatite-related REE deposits in China:Implications for petrogenesis

[J].Lithos,398/399106276.

[本文引用: 2]

Migdisov A ABychkov A YWilliams-Jones A Eet al2014.

A predictive model for the transport of copper by HCl-bearing water vapour in ore-forming magmatic-hydrothermal systems:Implications for copper porphyry ore formation

[J].Geochimica et Cosmochimica Acta,12933-53.

[本文引用: 1]

Nayebi NEsmaeily DChew D Met al2021.

Geochronological and geochemical evidence for multi-stage apatite in the Bafq iron metallogenic belt (Central Iran),with implications for the Chadormalu iron-apatite deposit

[J].Ore Geology Reviews,132104054.

[本文引用: 2]

Pan L CHu R ZBi X Wet al2020.

Evaluating magmatic fertility of Paleo-Tethyan granitoids in eastern Tibet using apatite chemical composition and Nd isotope

[J].Ore Geology Reviews,127103757.

[本文引用: 2]

Pan Y MMichael E F2002.

Compositions of the apatite-group minerals:Substitution mechanisms and controlling factors

[J].Reviews in Mineralogy and Geochemistry,481):12-40.

[本文引用: 1]

Peng JiantangHu RuizhongJiang Guohao2003.

Samarium-Neodymium isotope system of fiuorites from the Qinglong antimony deposit,Guizhou Province:Constraints on the mineralizing age and ore-forming materials’ sources

[J].Acta Petrologica Sinica,194):785-791.

Peng JiantangHu RuizhongQi Lianget al2002.

REE geochemistry of fluorite from the Qinglong antimony deposit and its geological implications

[J].Chinese Journal of Geology,373):277-287.

Pickering JMatthews WEnkelmann Eet al2020.

Laser ablation(U-Th-Sm)/He dating of detrital apatite

[J].Chemical Geology,548119683.

[本文引用: 1]

Qian LWang YXie Jet al2019.

The Late Mesozoic granodiorite and polymetallic mineralization in southern Anhui Province,China:A perspective from apatite geochemistry

[J].Solid Earth Sciences,4178-189.

[本文引用: 1]

Qu PLi N BNiu Het al2019.

Zircon and apatite as tools to monitor the evolution of fractionated I-type granites from the central Great Xing’an Range,NE China

[J].Lithos,348/349105207.

[本文引用: 1]

Qu PLi N BNiu Het al2021.

Difference in the nature of ore-forming magma between the Mesozoic porphyry Cu-Mo and Mo deposits in NE China:Records from apatite and zircon geochemistry

[J].Ore Geology Reviews,135104218.

[本文引用: 1]

Sawlowicz Z2013.

REE and their relevance to the development of the Kupferschiefer copper deposit in Poland

[J].Ore Geology Reviews,55176-186.

[本文引用: 1]

She HaidongFan HongruiHu Fangfanget al2018.

Migration and precipitation of rare earth elements in the hydrothermal fluids

[J].Acta Petrologica Sinica,3412):3567-3581.

Su W CHu R ZXia Bet al2009.

Calcite Sm-Nd isochron age of the Shuiyindong carlin-type gold deposit,Guizhou,China

[J].Chemical Geology,2583/4):269-274.

[本文引用: 3]

Su WenchaoZhu LuyanGe Xiet al2015.

Infrared microthermometry of fluid inclusions in stibnite from the Dachang antimony deposit,Guizhou

[J].Acta Petrologica Sinica,314):918-924.

Sun MLin S FZhang F Fet al2021.

Post-ore change and preservation of the late Paleozoic Tuwu porphyry Cu deposit in eastern Tianshan,NW China:Constraints from geology and apatite fission track thermochronology

[J].Ore Geology Reviews,137104297.

[本文引用: 1]

Sun S JYang X YWang G Jet al2019.

In situ elemental and Sr-O isotopic studies on apatite fromthe Xu-Huai intrusion at the southern margin of the North China Craton:Implications for petrogenesis and metallogeny

[J].Chemical Geology,510200-214.

[本文引用: 2]

Tan Q PXia YWang X Qet al2017.

Carbon-oxygen isotopes and rare earth elements as an exploration vector for carlin-type gold deposits:A case study of the Shuiyindong gold deposit,Guizhou Province,SW China

[J].Journal of Asian Earth Sciences,1481-12.

[本文引用: 1]

Tan Q PXia YXie Z Jet al2015.

Migration paths and precipitation mechanisms of ore-forming fluids at the Shuiyindong carlin-type gold deposit,Guizhou,China

[J].Ore Geology Reviews,69140-156.

[本文引用: 1]

Taylor S RMcLennan S M1985.The Continental Crust:Its Composition and Evolution[M].OxfordBlackwell Scientific Editor.

[本文引用: 1]

Teiber HMarks M A WWenzel Tet al2014.

The distribution of halogens(F,Cl,Br) in granitoid rocks

[J].Chemical Geology,374/37592-109.

[本文引用: 1]

Teiber HScharrer MMarks M A Wet al2015.

Equilibrium partitioning and subsequent re-distribution of halogens among apatite-biotite-amphibole assemblages from mantle-derived plutonic rocks:Complexities revealed

[J].Lithos,220/221/222/223221-237.

[本文引用: 1]

Wang ChenguangYang LiqiangHe Wenyan2017.

Apatite trace element and halogen compositions from the Beiya gold deposit,in western Yunnan and geological significance

[J].Acta Petrologica Sinica,337):2213-2224.

Wang GuozhiHu RuizhongSu Wenchao2002.

Geochemical constraint on ore fluid from fluorite in Qinglong antimony deposit,south-western Guizhou

[J].Mineral Deposits,21Supp.1):1028-1030.

Wang ShouxuZhang XingchunQin Chaojianet al2007.

Fluid inclusions in quartz veins of Pulang porphyry copper deposit,Zhongdian,northwestern Yunnan,China

[J].Geochemica,365):467-478.

Wang Y NCai KSun Met al2018.

Tracking the multi-stage exhumation history of the western Chinese Tianshan by apatite fission track(AFT) dating:Implication for the preservation of epithermal deposits in the ancient orogenic belt

[J].Ore Geology Reviews,100111-132.

[本文引用: 1]

Wang ZTan Q PXia Yet al2021.

Sm-Nd isochron age constraints of Au and Sb mineralization in southwestern Guizhou Province,China

[J].Minerals,112):100.

[本文引用: 1]

Wei D TZhou T FXia Yet al2022.

Ore fluid origin recorded by apatite chemistry:A case study on altered dolerite from the Badu carlin-type gold deposit,Youjiang Basin,SW China

[J].Ore Geology Reviews,143104745.

[本文引用: 6]

Wood S A1990.

The aqueous geochemistry of the rare-earth elements and yttrium:2.Theoretical predictions of speciation in hydrothermal solutions to 350℃ at saturation water vapor pressure

[J].Chemical Geology,881):99-125.

[本文引用: 1]

Xiao XZhou T FWhite N Cet al2021.

Porphyry Cu mineralization processes of Xinqiao deposit,Tongling ore district:Constraints from the geochronology and geochemistry of zircon,apatite,and rutile

[J].Ore Geology Reviews,138104340.

[本文引用: 2]

Xie XianyangFeng DingsuChen Maohonget al2016.

Fluid inclusion and stable isotope geochemistry study of the Nibao gold deposit,Guizhou and insights into ore genesis

[J].Acta Petrologica Sinica,3211):3360-3376.

Xing KaiShu Qihai2021.

Applications of apatite in study of ore deposits:A review

[J].Mineral Deposits,402):189-205.

Xing KaiShu QihaiZhao Hesenet al2018.

Geochemical characteristics and geological significance of apatite in Pulang porphyry copper deposit,western Yunnan

[J].Acta Pe-trologica Sinica,345):1427-1440.

Xu Y MJiang S YZhu J X2021.

Factors controlling the formation of large porphyry Cu deposits:A case study from the Jiurui ore district of Middle-Lower Yangtze River Metallogenic Belt using in situ zircon and apatite chemistry from syn-mineralization intrusions

[J].Ore Geology Reviews,133104082.

[本文引用: 3]

Zeng PushengLi WenchangWang Haipinget al2006.

The Indosinian lPulang superlarge porphyry copper deposit in Yunnan,China:Petrology and chronology

[J].Acta Petrologica Sinica,224):989-1000.

Zeng PushengMo XuanxueYu Xuehui2002.

Nd,Sr and Pb isotopic characteristics of the alkaline-rich porphyries in western Yunnan and its compression strike-slip setting

[J].Acta Petrologica et Mineralogica,213):231-241.

Zhang F HLi W BWhite N Cet al2020.

Geochemical and isotopic study of metasomatic apatite:Implications for gold mineralization in Xindigou,northern China

[J].Ore Geology Reviews,127103853.

[本文引用: 1]

Zhang S YYang L QHe W Yet al2021a.

Melt volatile budgets and magma evolution revealed by diverse apatite halogen and trace elements compositions:A case study at Pulang porphyry Cu-Au deposit,China

[J].Ore Geology Reviews,139104509.

[本文引用: 1]

Zhang ShuoJian XingZhang Wei2018.

Sedimentary provenance analysis using detrital apatite:A review

[J].Advances in Earth Science,3311):1142-1153.

Zhang X MSun C YXu W Let al2021b.

Geochemistry of apatites from Mesozoic granitoids in the northeastern North China Craton and their petrogenetic implications

[J].Lithos,402/403106198.

[本文引用: 1]

Zhang YuquanXie Yingwen1997.

Chronology and Nd,Sr isotopic characteristics of alkali rich intrusive rocks in Ailao-shan Jinshajiang

[J].Science in China,274):289-293.

Zheng Y F1996.

Oxygen isotope fractionations involving apatites:Application to paleotemperature determination

[J].Chemical Geology,1271):177-187.

[本文引用: 1]

Zheng YulinZhang ChangqingLiu Huanet al2021.

Apatite chemical feature of Yaoan gold deposit in western Yunnan and its geological significance

[J].Mineral Deposits,401):156-168.

Zhou QiushiWang Rui2020.

Advances in chlorine isotope geochemistry

[J].Earth Science Frontiers,273):42-67.

Zhu JZhang Z CSantosh Met al2020.

Carlin-style gold province linked to the extinct Emeishan plume

[J].Earth and Planetary Science Letters,530115940.

[本文引用: 2]

Zhu XiaoqingWang ZhonggangHe Yanet al2004.

REE content and distribution in apatite and its geological tracing significance

[J].Chinese Rare Earths,255):41-45.

Zou HXiao BGong D Xet al2022.

Origin and tectonic setting of Pingqiao fluorite-lithium deposit in the Guizhou,southwest Yangtze Block,China

[J].Ore Geology Reviews,143104755.

[本文引用: 1]

毕献武胡瑞忠彭建堂2005.

姚安和马厂箐富碱侵入岩体的地球化学特征

[J]岩石学报,211):113-124.

[本文引用: 1]

葛良胜郭晓东邹依林2002.

云南姚安与富碱岩浆活动有关的金矿床地质及成因

[J].地质与资源,111):29-37.

[本文引用: 1]

贾丽琼董国臣王梁2011.

磷灰石成因矿物学研究现状

[C]//中国矿物岩石地球化学学会第13届学术年会论文集.广州中国矿物岩石地球化学学会.

[本文引用: 1]

李勇莫宣学喻学惠2011.

金沙江—哀牢山断裂带几个富碱斑岩体的锆石 U-Pb 定年及地质意义

[J].现代地质,252):189-200.

[本文引用: 1]

刘建中杨成富王泽鹏2017.

贵州省贞丰县水银洞金矿床地质研究

[J].中国地质调查,42):32-41.

[本文引用: 1]

彭建堂胡瑞忠蒋国豪2003.

萤石Sm-Nd同位素体系对晴隆锑矿床成矿时代和物源的制约

[J].岩石学报,194):785-791.

[本文引用: 1]

彭建堂胡瑞忠漆亮2002.

晴隆锑矿床中萤石的稀土元素特征及其指示意义

[J].地质科学,373):277-287.

[本文引用: 1]

佘海东范宏瑞胡芳芳2018.

稀土元素在热液中的迁移与沉淀

[J].岩石学报,3412):3567-3581.

[本文引用: 1]

苏文超朱路艳格西2015.

贵州晴隆大厂锑矿床辉锑矿中流体包裹体的红外显微测温学研究

[J].岩石学报,314):918-924.

[本文引用: 2]

王晨光杨立强和文言2017.

滇西北衙金矿床磷灰石微量元素和卤素成分的地质意义

[J].岩石学报,337):2213-2224.

[本文引用: 2]

王国芝胡瑞忠苏文超2002.

黔西南晴隆锑矿萤石对成矿流体的地球化学限定

[J].矿床地质,21增1):1028-1030.

[本文引用: 1]

王守旭张兴春秦朝建2007.

滇西北中甸普朗斑岩铜矿流体包裹体初步研究

[J].地球化学,365):467-478.

[本文引用: 1]

谢贤洋冯定素陈懋弘2016.

贵州泥堡金矿床的流体包裹体和稳定同位素地球化学研究及其矿床成因意义

[J].岩石学报,3211):3360-3376.

[本文引用: 1]

邢凯舒启海2021.

磷灰石在矿床学研究中的应用

[J].矿床地质,402):189-205.

[本文引用: 3]

邢凯舒启海赵鹤森2018.

滇西普朗斑岩铜矿床中磷灰石的地球化学特征及其地质意义

[J].岩石学报,345):1427-1440.

[本文引用: 5]

曾普胜李文昌王海平2006.

云南普朗印支期超大型斑岩铜矿床:岩石学及年代学特征

[J].岩石学报,224):989-1000.

[本文引用: 2]

曾普胜莫宣学喻学惠2002.

滇西富碱斑岩带的Nd、Sr、Pb同位素特征及其挤压走滑背景

[J].岩石矿物学杂志,213):231-241.

[本文引用: 1]

张硕简星张巍2018.

碎屑磷灰石对沉积物源判别的指示

[J].地球科学进展,3311):1142-1153.

[本文引用: 1]

张玉泉谢应雯1997.

哀牢山—金沙江富碱侵入岩年代学和Nd,Sr同位素特征

[J].中国科学:地球科学,274):289-293.

[本文引用: 2]

郑瑜林张长青刘欢2021.

滇西姚安金矿床磷灰石化学特征及指示意义

[J].矿床地质,401):156-168.

[本文引用: 5]

周秋石王瑞2020

氯同位素地球化学研究进展

[J].地学前缘,273):42-67.

[本文引用: 1]

朱笑青王中刚黄艳2004.

磷灰石的稀土组成及其示踪意义

[J].稀土,255):41-45.

[本文引用: 1]

/