img

QQ群聊

img

官方微信

  • CN 62-1112/TF 
  • ISSN 1005-2518 
  • 创刊于1988年
高级检索

黄金科学技术, 2023, 31(4): 689-697 doi: 10.11872/j.issn.1005-2518.2023.04.064

采选技术与矿山管理

贵州某卡林型金矿精锐微泡浮选生产实践

彭科淇,, 周瑞仙

贵州紫金矿业股份有限公司,贵州 贞丰 562200

Production Practice of JRF Micro-bubble Flotation on Carlin Types Gold Ore in Guizhou

PENG Keqi,, ZHOU Ruixian

Guizhou Zijin Mining Co. ,Ltd. ,Zhenfeng 562200,Guizhou,China

收稿日期: 2022-05-10   修回日期: 2022-06-12  

Received: 2022-05-10   Revised: 2022-06-12  

作者简介 About authors

彭科淇(1989-),男,贵州黔南人,助理工程师,从事矿山选冶技术与生产管理工作634333106@qq.com , E-mail:634333106@qq.com

摘要

贵州某卡林型金矿原矿金品位较低,有用矿物与脉石矿物嵌布粒度细,有害元素As和C含量较高,常规细磨浮选工艺金回收率仅为80.54%,尾矿金品位为0.97×10-6,浮选尾矿金损失较为严重。为了提高金精矿回收率,降低浮选尾矿金品位,开展了工艺矿物学及精锐微泡浮选工业试验研究。结果表明:常规细磨浮选尾矿中损失的金主要以-38 μm粒级的贫连生体形式损失,且金含量较高。常规细磨浮选无法捕收的微细颗粒矿物,是造成浮选尾矿金损失的主要原因。采用精锐微泡浮选技术对扫选Ⅳ的尾矿进行再选试验,结果表明:精锐微泡浮选对尾矿中-38 μm粒级的微细颗粒矿物有显著捕收效果,工艺优化后,金累计回收率为82.39%,提高了1.85个百分点,尾矿金品位为0.88×10-6,降低了0.09×10-6,浮选指标逐渐转好,提升了企业经济效益。

关键词: ; 工艺矿物学 ; 精锐微泡浮选 ; 浮选尾矿 ; 回收率 ; 微细颗粒

Abstract

The raw ore of a carlin gold mine in Guizhou has low gold grade,fine disseminated granularity of valuable minerals and gangue minerals,and high content of harmful elements arsenic and carbon.The recovery rate of conventional fine grinding flotation process is only 80.54% and the gold grade of tailing is 0.97×10-6,the loss of flotation tailing gold is relatively serious.In order to improve the recovery rate of gold concentrate and reduce the gold grade of flotation tailing,the process mineralogy study of secondary grinding classification overflow and flotation tailing was carried out to find out the gold distribution and loss.The results show that the gold lost in conventional fine grinding flotation tailing is mainly sulfide wrapped gold,which is mainly lost in the poor coenobium of -38 μm grade,accounting for 60.70%,and the lost sulfide gold content is high.Secondly,there are a small amount of dissociated monomer and a small amount of fusant,which are not fully recovered due to the fine particle size,and also lost in the tailings.The main cause of the loss of gold in flotation tailing is that the fine particle minerals cannot be caught by conventional fine grinding flotation.Combined with the site production situation,the JRF micro-bubble flotation was applied to rough selection Ⅰ operation and scavenge Ⅳ tailing for reselection test.The test results show that JRF micro-bubble flotation has a significant catching effect on some fine particle minerals in tailing,which can further strengthen the capture of sulfide poor coenobium of -38 μm grade and a amount dissociation monomer of -20 μm grade in conventional fine grinding flotation scavenge Ⅳ tailing,and reduce the loss of gold in flotation tailing.After the technical transformation,the cumulative recovery rate of gold is 82.39% and the tailing grade is 0.88×10-6.The recovery rate increased by 1.85 percentage points,and the tailing grade decreased by 0.09×10-6,and the flotation index was gradually improved,which increased the economic benefits of enterprises.

Keywords: gold ; process mineralogy ; JRF micro-bubble flotation ; flotation tailing ; recovery ; fine particles

PDF (2908KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

彭科淇, 周瑞仙. 贵州某卡林型金矿精锐微泡浮选生产实践[J]. 黄金科学技术, 2023, 31(4): 689-697 doi:10.11872/j.issn.1005-2518.2023.04.064

PENG Keqi, ZHOU Ruixian. Production Practice of JRF Micro-bubble Flotation on Carlin Types Gold Ore in Guizhou[J]. Gold Science and Technology, 2023, 31(4): 689-697 doi:10.11872/j.issn.1005-2518.2023.04.064

随着经济的发展和社会的进步,人们对黄金的需求量日益增加。然而,经过长期的开发利用,金矿资源储量日益减少,涉及地质勘探、采矿、选矿及冶金等行业对黄金采掘生产的高新技术要求日益严苛,突破现有技术瓶颈迫在眉睫(刘科勇,2016班金彭等,2019齐剑等,2021)。目前,贫、细、杂等难选冶金矿石的生产回收工艺研发已成为研究热点(杨波等,2020许晓阳,2020Salazar-Campoy et al.,2020吴天骄等,2021Gui et al.,2021常征等,2021Lee et al.,2022)。其中,贵州卡林型金矿为当前难选冶矿石典型代表之一(刘源等,2013孙忠梅等,2014崔毅琦等,2014崔立凤,2018满露梅,2021Ng et al.,2022)。

贵州卡林型金矿主要载金矿物为黄铁矿和毒砂,通常呈微细浸染状存在,矿石嵌布粒度微细不均,砷、碳杂质含量较高,属于难选金矿石。在浮选过程中,磨矿细度要求较高,基本达到-0.074 mm占90%以上。然而,磨矿细度较细,导致浮选环境恶化,部分微细颗粒即使已经解离也不能被回收,依旧损失在尾矿中。鉴于此,引进精锐微泡浮选设备,强化回收尾矿中损失微细颗粒显得尤为重要(韦龙明,1996许涛等,2013Li et al.,2017李国等,2019)。

某选厂设计日处理能力为1 800 t/d,共有2个系列,磨浮系统均采用两段闭路磨矿+两粗两精四扫的常规细磨浮选工艺。自2020年11月以来,该浮选系统指标严重恶化,金精矿回收率低,尾矿金损失严重,现有选别工艺难以达到较好的选矿指标,企业经济效益大幅下滑。为了查明尾矿金损失的原因,提高金精矿回收率及降低尾矿品位,开展了工艺矿物学及精锐微泡浮选应用研究。

1 矿石性质

1.1 原矿多元素、金物相及矿物组成分析

原矿多元素、金物相及矿物组成分析结果见表1~表3。结果表明:矿石中金品位为3.98×10-6,是主要回收的有价金属,Ag含量较低,不具有回收价值,有害元素As和有机碳含量较高,分别为0.41%和1.53%。矿石中的金主要以硫化物和碳质包裹金的形式存在,占比高达88.53%,含少量裸露金、碳酸盐和氧化物包裹金以及硅酸盐包裹金,占比分别为4.14%、1.44%和5.89%。载金矿物主要为黄铁矿和毒砂,含微量的磁黄铁矿和闪锌矿等。脉石矿物主要有碳酸盐类、石英和绢云母等,含少量褐铁矿、锐钛矿和有机碳等。

表1   原矿多元素分析结果

Table 1  Analysis results of multi-elements of raw ore(%)

化学成分含量化学成分含量
Au3.98Pb0.01
Ag<0.01Zn0.01
TS5.80CaO7.49
S2-5.12MgO2.63
As0.41Al2O34.69
C6.03SiO237.03
C有机1.53TiO20.82
Fe8.22Hg0.001

注:Au和Ag元素含量单位为×10-6

新窗口打开| 下载CSV


表2   原矿金物相分析结果

Table 2  Analysis results of gold phase of raw ore

相别含量/(×10-6占比/%
合计3.990100.00
裸露金0.1654.14
碳酸盐和氧化物包裹金0.0581.44
硫化物和碳质包裹金3.53088.53
硅酸盐及其他包裹金0.2355.89

新窗口打开| 下载CSV


表3   原矿矿物组成及含量分析结果

Table 3  Analysis results of the composition and content of raw ore(%)

矿物名称含量矿物名称含量
黄铁矿9.63铁白云石31.05
毒砂0.34白云石5.70
磁黄铁矿0.01方解石9.19
黄铜矿0.01菱铁矿0.19
闪锌矿0.01石英30.78
方铅矿<0.01绢云母9.34
褐铁矿0.08绿泥石0.14
铁矾0.02锐钛矿1.52
重晶石0.05有机碳1.34
磷灰石0.26其他矿物0.34

新窗口打开| 下载CSV


1.2 尾矿中金损失分析

采用现场两粗两精四扫浮选流程生产时,金回收率仅为80.54%,尾矿金品位为0.97×10-6,尾矿金损失严重,选别流程如图1所示。为了查明尾矿金损失的原因,开展二段磨矿分级溢流及浮选尾矿硫化物解离连生情况及粒度分析。

图1

图1   浮选工艺流程

Fig.1   Flowsheet of flotation process


当磨矿细度为-75 μm占比为89.79%时,二段分级溢流尾矿中硫化物单体解离度为78.27%,富连生体为10.29%,贫连生体为11.44%。未解离的硫化物主要与硅酸盐矿物连生,主要分布在20~75 μm粒级中。在-10 μm粒级中硫化物以解离单体和贫连生体为主,占比分别为13.11%和4.65%,该粒级金不易回收。由二段分级溢流尾矿粒度筛析可知:-38 μm粒级含量为69.04%;-25 μm粒级含量为62.79%,该粒级金品位高,金属分布率为35.10%;-10 μm 粒级含量高达43.90%,该粒级金品位略低,金属分布率为34.06%。二段分级溢流尾矿硫化物解离情况较好,-25 μm细粒级金品位略低但含量占比较高,结果见表4表5

表4   二段磨矿分级溢流尾矿中硫化物的粒度—解离连生情况

Table 4  Granularity-dissociation coenobium situation of sulfide of classification overflow tailings in secondary grinding

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物及碳酸盐与硅酸盐及碳质0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.003.0418.6918.0629.1435.9315.890.98
x=10078.27--13.1122.6229.3912.470.68
80≤x<1005.220.644.580.020.342.342.320.20
50≤x<805.070.694.380.282.141.910.640.10
x<5011.441.719.734.654.042.290.460.00

注:x为复合颗粒中目标矿物的面积占比,其中x=100为解离单体,50≤x<100为富连生体,x<50为贫连生体

新窗口打开| 下载CSV


表5   二段磨矿分级溢流尾矿粒度组成及金金属分布

Table 5  Granularity composition and gold metal distribution of overflow tailings from secondary grinding classification

粒级/mm产率/%

金品位

/(×10-6

金金属分布率/%
个别负累积
合计100.00-4.02100.00
+0.07410.21100.002.396.07
-0.074+0.04513.7689.793.0110.29
-0.045+0.0386.9976.044.047.02
-0.038+0.0256.2569.044.807.46
-0.025+0.01018.8962.797.4735.10
-0.01043.9043.903.1234.06

新窗口打开| 下载CSV


采用常规浮选工艺选别,尾矿中贫连生体占比高达60.70%,损失的金属呈哑铃型分布,主要分布在+45 μm较粗颗粒粒级和-25 μm细粒级中,占比分别为36.89%和46.32%。现有浮选设备对微细颗粒选别回收效果较差,尾矿中的金主要以-38 μm粒级贫连生体形式损失,其次有少量解离单体和少量富连生体由于粒度较细没有完全回收也损失在尾矿中。结果见表6表7图2

表6   浮选尾矿中硫化物的粒度—解离连生情况

Table 6  Granularity-dissociation coenobium situation of sulfide in flotation tailings

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物与碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.006.1612.4859.4642.7935.3117.633.890.38
x=10021.90---12.816.421.730.940.00
80≤x<1007.613.220.364.031.023.562.570.460.00
50≤x<809.792.540.616.642.023.483.040.870.38
x<5060.700.4011.5148.7926.9421.8510.291.620.00

注:x为复合颗粒中目标矿物的面积占比,其中x=100为解离单体,50≤x<100为富连生体,x<50为贫连生体

新窗口打开| 下载CSV


表7   浮选尾矿粒度组成及金金属分布

Table 7  Granularity composition and gold metal distribution in flotation tailings

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-1.28100.00
+0.07411.81100.001.6615.26
-0.074+0.04514.8688.191.8721.63
-0.045+0.0385.6073.331.787.76
-0.038+0.0257.0367.731.659.03
-0.025+0.01019.5860.701.5122.95
-0.01041.1241.120.7323.37

新窗口打开| 下载CSV


图2

图2   浮选尾矿中微细贫连生的黄铁矿

Fig.2   Fine poor coenobium pyrite in flotation tailings


2 精锐微泡浮选机应用研究

基于前期研究结果,为了回收常规浮选尾矿中损失的金,强化微细粒级矿物浮选,增加选别作业回收率,降低尾矿品位,考虑进行现场生产工艺优化。结合现场生产尾矿金损失现状,引进精锐微泡浮选技术及设备,分别应用于粗选Ⅰ作业及扫选Ⅳ尾矿再选作业,基于此开展工业试验对比研究。

2.1 精锐微泡浮选机结构与原理

精锐微泡浮选机是基于Jameson 浮选机研制开发的浮选设备(陈忠信,1997),精锐微泡浮选机相对于浮选柱和常规浮选机而言,是一种结构紧凑、成本低且效率高的微泡射流浮选设备。该设备无机械搅拌结构,通过利用高速射流产生负压吸入空气,下冲管内流体高度紊动剪切及水力空化作用,产生微小气泡,强化气泡与矿粒碰撞附着,实现微细粒矿物的高效矿化与分选,其结构及原理见图3陈晓东,2021)。

图3

图3   精锐微泡浮选机设备结构及原理示意图

Fig.3   Schematic diagram of structure and principle JRF micro-bubble flotation machine


2.2 粗选Ⅰ作业工业试验对比

通过对药剂用量及精锐微泡浮选机控制参数(给矿压力、吸气负压和喷淋水量等)进行探索及调整,待现场生产指标稳定后,开展精锐微泡浮选应用于粗选Ⅰ作业的工业试验,并与原工艺流程常规浮选捕收微细粒级矿物浮选效果进行对比,试验流程如图4所示。现有浮选机及精锐微泡浮选机设备情况见表8

图4

图4   粗选Ⅰ作业工业试验对比流程

(精锐微泡浮选与常规浮选)

Fig.4   Comparison process of the rough selection Ⅰoperation

(JRF micro-bubble flotation with

conventional flotation)


表8   浮选设备型号及规格

Table 8  Model and specification of flotation equipment

作业名称设备型号数量/台容积/m3
粗选BF-10710
扫选BF-101810
精选BF-454
微泡浮选JRF3217/4S110

新窗口打开| 下载CSV


在粗选Ⅰ作业中分别使用精锐微泡浮选机和常规浮选设备进行选别,获得各项生产指标。结果表明:精锐微泡浮选尾矿金品位为1.13×10-6,精矿回收率为80.89%,常规浮选尾矿金品位为1.07×10-6,精矿回收率约为79.33%,二者生产指标相当,试验结果见表9

表9   粗选Ⅰ作业中精锐微泡浮选与常规浮选的工业试验结果对比

Table 9  Comparison of industrial test results of JRF micro-bubble flotation with conventional flotation in the rough selection Ⅰ operation

项目金品位/(×10-6产率/%金回收率/%
原矿精矿尾矿
精锐微泡浮选4.7118.861.1320.2080.89
常规细磨浮选4.2619.241.0717.5679.33

新窗口打开| 下载CSV


然而,进一步对粗选Ⅰ精矿产品进行粒度分析发现,精锐微泡浮选工艺选别的粗选Ⅰ精矿产品-38 μm粒级占比高达81.52%,-25 μm粒级占比为70.15%,-10 μm粒级占比为40.34%。而常规浮选工艺选别的粗选Ⅰ精矿产品中-38 μm粒级占比为65.45%,-25 μm粒级占比为53.46%,-10 μm粒级占比为32.30%。说明精锐微泡浮选对-38 μm细粒级矿物的选别捕收具有显著优势,粒度分析结果见图5图6

图5

图5   精锐微泡浮选粗选Ⅰ精矿产品粒度分布曲线

Fig.5   Particle size distribution curves of the concentrate products from rough selection Ⅰby JRF micro-bubble flotation


图6

图6   常规浮选粗选Ⅰ精矿产品粒度分布曲线

Fig.6   Particle size distribution curves of the concentrate products from rough selection Ⅰby conventional flotation


2.3 扫选Ⅳ尾矿再选工业试验对比

为了强化回收常规浮选尾矿中损失的金,捕收尾矿中微细粒级矿物,应用精锐微泡浮选设备对常规浮选尾矿进行再选工业试验,并与常规浮选进行对比,试验流程如图7所示。

图7

图7   扫Ⅳ尾矿再选工业试验对比流程

(精锐微泡浮选与常规浮选)

Fig.7   Comparison process of the scavenging Ⅳ tailing reselection

(JRF micro-bubble flotation with conventional flotation)


2021年8月完成现场改造及调试后,选矿回收率有所提升,浮选尾矿金损失显著下降。2021年9~12月综合浮选金累计回收率为79.72%,尾矿金品位为1.03×10-6,相比技改优化前金回收率提高了1.5个百分点,尾矿金品位降低了0.06×10-6。截至2022年4月的生产数据表明,入选原矿金品位为3.5×10-6~4.5×10-6,精矿产率约为20%,常规浮选精矿金品位随原矿金品位变化有所波动,金累计回收率仅为80.54%,尾矿金品位为0.97×10-6。精锐微泡浮选金累计回收率为82.39%,尾矿金品位为0.88×10-6。工艺优化后,金回收率提高了1.85个百分点,尾矿金品位降低了0.09×10-6,精锐浮选精矿金品位约为3×10-6,由于精矿金品位较低,将其单独堆存用于后期生产配矿时加入加压氧化工序,整体金回收效果较好,指标对比如图8所示。

图8

图8   技改前后工业试验指标对比

Fig.8   Comparison of industrial test index before and after technical transformation


2.4 精锐微泡浮选精矿产品分析

精锐微泡浮选精矿产品中硫化物的解离单体占比为24.19%,其中-20 μm粒级的解离单体占比为20.82%;富连生体占比为12.64%;贫连生体占比为 63.17%,其中-38 μm粒级的贫连生体占比为58.27%。捕收的金属大量分布在-25 μm微细粒级中,金品位较高,金属分布率高达43.26%,结果见表10表11图9。说明精锐微泡浮选进一步强化捕收了常规浮选扫Ⅳ尾矿中粒度在-38 μm粒级的硫化物贫连生体及少量-20 μm粒级的硫化物解离单体。

表10   精锐微泡浮选精矿中硫化物的粒度—解离连生情况

Table 10  Granularity-dissociation coenobium situation of sulfide in JRF micro-bubble flotation concentrate

解离情况/%含量/%硫化物连生情况/%各粒度占比/%
与氧化物和碳酸盐与硅酸盐0~10 μm10~20 μm20~38 μm38~75 μm75~150 μm
合计100.0010.7565.0733.5332.7123.329.660.78
x=10024.19--13.767.061.981.240.15
80≤x<1005.411.204.220.070.731.972.500.14
50≤x<807.231.295.940.622.103.001.250.26
x<5063.178.2654.9119.0822.8216.374.670.23

注:x为复合颗粒中目标矿物的面积占比,其中x=100为解离单体,50≤x<100为富连生体,x<50为贫连生体

新窗口打开| 下载CSV


表11   精锐微泡浮选精矿粒度组成及金属分布

Table 11  Granularity composition and metal distribution in JRF micro-bubble flotation concentrate

粒级/mm

个别产率

/%

负累积产率

/%

金品位

/(×10-6

金金属分布率

/%

合计100.00-4.48100.00
+0.1063.35100.001.851.38
-0.106+0.07422.9396.653.6418.63
-0.074+0.04521.3873.724.6722.29
-0.045+0.0388.4352.344.718.86
-0.038+0.0255.2243.914.785.57
-0.02538.6938.695.0143.26

新窗口打开| 下载CSV


图9

图9   精锐微泡浮选精矿中的微细贫连生体黄铁矿

Fig.9   Fine particles coenobium of pyrite in JRF micro-bubble flotation concentrate


2.5 精锐微泡浮选机选别微细颗粒机理分析

为了解精锐微泡浮选机对细粒回收效果较优的原因,对其机理进行分析。首先,矿浆高压给矿进入喷嘴后形成高速射流,矿浆喷射时产生负压吸入空气,在流体高度紊动剪切作用下,吸入的空气在下冲管狭小空间内产生大量微小气泡,较短时间内即可完成矿化过程。其次,精锐微泡浮选机产生的气泡直径为0.3 mm,而常规浮选机产生的气泡直径大于1 mm,在保持相同气容量的前提下,精锐微泡浮选机产生的气泡数量更多,气泡表面积增大,使得气泡与微细颗粒矿物间的碰撞和吸附均远高于常规浮选机(陈晓东,2021)。最后,虽然精锐微泡浮选机没有搅拌装置,但其通过喷嘴给矿形成高速射流时,也增大了矿浆流速,形成强烈湍流环境,有利于微细颗粒浮选(曹亦俊等,2017)。

3 结论

(1)常规浮选尾矿中损失的金主要以硫化物-38 μm粒级的贫连生体形式损失,占比高达60.70%,此外还有少量解离单体及少量富连生体由于粒度较细没有完全回收也损失在尾矿中。

(2)粗选Ⅰ作业中使用精锐微泡浮选替代常规浮选设备,精锐微泡浮选精矿产品-38 μm粒级占比高达81.52%,而常规浮选精矿产品中-38 μm粒级占比仅为65.45%。精锐微泡强化了-38 μm细粒级矿物的捕收。

(3)对扫Ⅳ尾矿进行再选时,精锐微泡浮选能强化捕收常规细磨浮选扫Ⅳ尾矿中粒度在-38 μm粒级的硫化物贫连生体及少量-20 μm粒级的硫化物解离单体。技改后,选矿回收率有所提升,浮选尾矿金损失显著下降。金累计回收率为82.39%,金回收率提高了1.85%,尾矿金品位降低了0.09×10-6,整体金回收效果较好,浮选指标显著提升,提升了企业经济效益。

(4)分析认为精锐微泡浮选机的优势在于产生大量微小气泡,增加气泡与微细颗粒之间的碰撞和吸附,同时高压射流喷射时产生湍流环境,有利于微细颗粒矿物浮选。

http://www.goldsci.ac.cn/article/2023/1005-2518/1005-2518-2023-31-4-689.shtml

参考文献

Ban JinpengChang LiminDai Yunpenget al2019.

Challenges and countermeasures for water kicks in tunnel drilling at Shuiyindong gold mine in southwest Guizhou

[J].Exploration Engineering(Rock and Soil Drilling and Excavation Engineering),4611):14-20.

Cao YijunYan XiaokangWang Lijunet al2017.

The micro-turbulence intensification on the fine minerals flotation

[J].Conservation and Utilization of Mineral Resources,(2):113-118.

Chang ZhengXiong XinSun Xiaohua2021.

Experimental research on the mineral processing of refractory microfine disseminated arsenic and carbonaceous gold ore from Qinghai

[J].Gold,421):55-5863.

Chen Xiaodong2021.

Principle and practice of enhanced flotation performance of fine particles by JRF micro-bubble flotation machine

[J].Nonferrous Metals(Mineral Processing Section),(1):112-116.

Chen Zhongxin1997.

Flotation machine

[J].Foreign Mineralation Express,(13):11-18.

Cui LifengTian ShuguoHe Meili2018.

Experimental study on mineral processing of fine-grained and disseminated refractory carbon gold ore from Shuiyindong of Guizhou

[J].Comprehensive Utilization of Minerals,(4):37-41.

Cui YiqiChen HailiangDong Penget al2014.

Research on the status of pretreatment techniques for carlin-type gold deposits

[J].Gold,3510):61-63.

Gui Q HWang S XZhang L B2021.

The mechanism of ultrasound oxidation effect on the pyrite for refractory gold ore pretreatment

[J].Arabian Journal of Chemistry,144):103045.

[本文引用: 1]

Lee SSadri FGhahreman Aet al2022.

Enhanced gold recovery from alkaline pressure oxidized refractory gold ore after its mechanical activation followed by thiosulfate leaching

[J].Journal of Sustainable Metallurgy,81):186-196.

[本文引用: 1]

Li GuoPi QiaohuiWei Chaowenet al2019.

Occurrence of gold in Shuiyindong gold deposit,Guizhou

[J].Journal of Guilin University of Technology,394):817-829.

Li X XZhu X QLing Y Tet al2017.

Mineralogy and geochemistry characteristics and genetic implications for stratabound carlin-type gold deposits in southwest Guizhou,China

[J].Journal of Nanoscience and Nanotechnology,179):6307-6317.

[本文引用: 1]

Liu Keyong2016.

Problems and suggestions existing in gold mine development in China

[J].Modern State-Owned Enterprise Research,(24):202-203.

Liu YuanHou ZhongjianLi Dingwu2013.

Present situation of research into carlin-type gold deposits in China

[J].Sichuan Geological Journal,332):132-136.

Man Lumei2021.

Research and exploration on the combined technology of beneficiation and metallurgy for complex carlin type gold deposits

[J].China Nonferrous Metals Metallurgy,503):63-69.

Ng S WYang YSu X Zet al2022.

Characterization of preg-robbing carbonaceous minerals from the Shuiyindong carlin-type gold deposit via spectroscopic techniques

[J].Mining,Metallurgy and Exploration,39169-188.

[本文引用: 1]

Qi JianPan ChenglongTian Huimin2021.

Development trend and policy suggestions of China’s gold industry

[J].China Market,(15):1-8.

Salazar-Campoy M MValenzuela-García J LQuiróz-Castillo L Set al2020.

Comparative study of gold extraction from refractory pyritic ores through conventional leaching and simultaneous pressure leaching/oxidation

[J].Mining Engineering,728):45-46.

[本文引用: 1]

Sun ZhongmeiSun ChunbaoGan Yonggang2014.

Study on flotation technology on carlin types gold ore in Guizhou

[J].Comprehensive Utilization of Minerals,(5):34-37.

Wei Longming1996.

General characters of gold mineral in carlin-type gold deposit,China

[J].Gold Geology,23):15-17.

Wu TianjiaoCao HuanNiu Fangyinet al2021.

Study on gold extraction from a carbon-bearing fine-grained refractory gold ore by flotation process

[J].Gold Science and Technology,295):761-770.

Xu TaoSu ShuyunLiao Zhanpiet al2013.

Study on modes of occurrence of gold for Shuiyindong gold bearing pyrite in Guizhou Province

[J].Gold Science and Technology,215):86-92.

Xu Xiaoyang2020.

Research on extracting gold from refractory gold ore by POX-cyanidation technique

[J].Gold,414):50-53.

Yang BoTong XiongXie Xianet al2020.

Study on the gold recovery from flotation tailings of a refractory gold ores in Gansu Province by a process combining mineral processing and metallurgy

[J].Gold Science and Technology,282):285-292.

班金彭畅利民代云鹏2019.

黔西南水银洞金矿涌水坑道钻探难点与对策

[J].探矿工程(岩土钻掘工程),4611):14-20.

[本文引用: 1]

曹亦俊闫小康王利军2017.

微细粒浮选的微观湍流强化

[J].矿产保护与利用,(2):113-118.

[本文引用: 1]

常征熊馨孙晓华2021.

青海某含砷含碳微细浸染型难处理金矿石选矿试验研究

[J].黄金,421):55-5863.

[本文引用: 1]

陈晓东2021.

精锐微泡浮选机强化微细粒浮选的机理与实践

[J].有色金属(选矿部分),(1):112-116.

[本文引用: 2]

陈忠信1997.

浮选机

[J].国外选矿快报,(13):11-18.

[本文引用: 1]

崔立凤田树国何美丽2018.

贵州水银洞含炭细粒浸染型难选冶金矿石选矿试验研究

[J].矿产综合利用,(4):37-41.

[本文引用: 1]

崔毅琦陈海亮董鹏2014.

卡林型金矿预处理技术研究现状

[J].黄金,3510):61-63.

[本文引用: 1]

李国皮桥辉韦朝文2019.

贵州水银洞金矿金的赋存状态

[J].桂林理工大学学报,394):817-829.

[本文引用: 1]

刘科勇2016.

我国金矿开发存在的问题及建议

[J].现代国企研究,(24):202-203.

[本文引用: 1]

刘源侯中健李定武2013.

我国卡林型金矿研究现状

[J].四川地质学报,332):132-136.

[本文引用: 1]

满露梅2021.

复杂卡林型金矿选冶联合工艺的研究与探索

[J].中国有色冶金,503):63-69.

[本文引用: 1]

齐剑潘成龙田惠敏2021.

我国黄金行业发展趋势及政策建议

[J].中国市场,(15):1-8.

[本文引用: 1]

孙忠梅孙春宝甘永刚2014.

贵州某卡林型金矿浮选工艺研究

[J].矿产综合利用,(5):34-37.

[本文引用: 1]

韦龙明1996.

中国卡林型金矿床金矿物的一般特征

[J].黄金地质,23):15-17.

[本文引用: 1]

吴天骄曹欢牛芳银2021.

某含碳微细粒难处理金矿浮选提金工艺研究

[J].黄金科学技术,295):761-770.

[本文引用: 1]

许涛苏妤芸廖占丕2013.

贵州水银洞含金黄铁矿中金的赋存形式探讨

[J].黄金科学技术,215):86-92.

[本文引用: 1]

许晓阳2020.

难处理金矿石加压氧化——氰化提金技术研究

[J].黄金,414):50-53.

[本文引用: 1]

杨波童雄谢贤2020.

选冶联合提高甘肃某难浸金矿浮选尾矿金回收率的试验研究

[J].黄金科学技术,282):285-292.

[本文引用: 1]

/