基于非均衡数据的ADASYN-CatBoost测井岩性智能识别——以胶西北招贤金矿床为例
许方颖,邹艳红,易卓炜,杨福强,毛先成

ADASYN-CatBoost Method for Intelligent Identification of Logging Lithology Considering Unbalanced Data:A Case Study of Zhaoxian Gold Deposit in Northwestern Jiaodong Peninsula
Fangying XU,Yanhong ZOU,Zhuowei YI,Fuqiang YANG,Xiancheng MAO
表3 模型的超参数数值范围及其最优解
Table 3 Numerical range of hyperparameter of the model and its optimal solution
分类器超参数搜索范围最优参数
GBDT学习率0.000001~0.50.1
弱学习器个数50~130119
叶子节点最小样本数5~5010
树的最大深度2~3025
LightGBM学习率0.001~0.8000.2
弱学习器个数50~130102
树的最大深度1~5024
树的叶子节点个数15~6046
叶子节点最小数据量5~5530
CatBoost学习率0.001~0.8000.1
树的深度3~1710
最大迭代次数50~500300
L2正则化参数1~201